Phy 153: Structure of Matter, Electricity and Magnetism and Modern Physics

3.00 Credit, 3 hrs. /week


Structure of matter : crystalline and non-crystalline solids, single crystal and polycrystal solids, unit cell, crystal systems, coordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between interplanar spacing and Miller indices, Bragg's law, methods of determination of interplanar spacing from diffraction patterns; defects in solids: point defects, line defects, bonds in solids, interatomic distances, calculation of cohesive and bonding energy; introduction to band theory: distinction between metal, semiconductor and insulator.

Electricity and magnetism: Coulomb's law, electric field (e), Gauss's law and its application, electric potential (v), capacitors and capacitance, capacitors with dielectric, dielectric and atomic view, charging and discharging of a capacitor, Ohm's law, Kirchoff's law; magnetic field: magnetic induction, magnetic force on a current carrying conductor, torque on a current carrying loop, Hall effect, Faradays law of electromagnetic induction, Lenz's law, self-induction, mutual induction; magnetic properties of matter; hysteresis curve; electromagnetic oscillation: L-C oscillations and its analogy to simple harmonic motion.

Modern physics: Michelson-Morley's experiment, Galilean transformation, special theory of relativity and its consequences; quantum theory of radiation; photo-electric effect, Compton effect, wave particle duality, interpretation of Bohr's postulates, radioactive disintegration, properties of nucleus, nuclear reactions, fission, fusion, chain reaction, nuclear reactor.