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Free Oscillation and Damped Oscillation

* If an oscillation occurs flawlessly without any resistive force acting on it is

called free oscillation.

* Any oscillation occurring in an air medium, experiences frictional force and

consequent energy dissipation occurs.

* The amplitude of oscillation decays continuously with time and finally

diminishes. Such oscillation is called damped oscillation.

* The dissipated energy appears as heat either within the oscillating system

itself or in the surrounding medium.



Characteristics of Damped Oscillation

Frictional force acting on a body opposite to the direction of its motion is called

damping force.
Damping force reduces the velocity and the kinetic energy of the moving body.

Damping or dissipative forces generally arises due to the viscosity or friction in the

medium and are non-conservative in nature.

When velocities of body are not high, damping force is found to be proportional to

velocity (v) of the particle

The frequency of damped oscillator is always less than that of it's natural or

undamped frequency.

Amplitude of oscillation does not remain constant, rather it decays with time



Free Oscillation and Damped Oscillation
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AoAEBagELZ3dzLXdpeilpbWc&sclient=img&ei=V505XtvbEpKG-AbD45fwDg&bih=698&biw=1478&rlz=1C1GGRV_enBD789BD789#imgrc=187e3Yba5bifcM
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Differential equation of a damped oscillator

If damping is taken into consideration for an oscillator, then oscillator
experiences

(i) Restoring Force : F,.=—ky; k=force constant
(ii) Damping Force : Fd=—b%; b=damping constant
Where, y is the displacement of oscillating system and v is the velocity of

this displacement.

We, therefore, can write the equation of the damped harmonic oscillator

as, F=F,+ F.
) . d?
From Newton’s 2" law of motion, F= md—tf

Combination of Hook’s law and Newton’s 24 Jaw of motion:

a’y

=
dt?

+2p%+w2y=0 (4.1)

2p =§ = damping co-efficient of the medium.

p has the dimension of frequency referred to as
damping frequency.

Solution:

To solve equation (4.1) let us take the trial solution,
y = Ae™? (4.2)

Substituting this solution in equation (4.1) we get,
m'Z4e™t+2pm'de™ t+w24e™t =0

=>m'éy+ Zpm'y+ wiy=0

=>m'’+ Zpm'+ w?=0; [Quadratic equation]

Solving this equation for m' we get,

N R
m= . =-px.p W




Various Conditions of Damped Oscillation

Then, the general solution of equation (4.1) is,

y = e"pt[Ae(“pz_wz)t + Be_(vpz_wz)t] (4.3)

Case. I (Overdamped motion)
If p?>w? the indices of “e” are real and we get,
y = e P[Ae* + Be %]

Where, o = \/p? — w?

Now, let us replace A and Bby two other constants Cand ¢
such that we can write, A:% ed and B:% ed

(4.4)

Here,A+B=£e§ + Ceo8 = 2(35 + 6_8) =$92¢cosh s
2 2 2 2

&~ A+ B = Ccoshd

€8
A_ ¢ 028
= —
B~ Co-8

2

Using the new constants in equation (4.4),

_ ¢ [C C _s _
y=e pt[zefieoct_l_ge 8¢ at]

_C e—'pt[e(at+8) + e—(oct+6)]

2

= %e"pt X 2 cosh(at + 6)

=Ce ™ Plcosh(at + 6)

So, y=Ce P'cosh [(w/pz — w? t) + 8]

Negative power of “e”indicates exponential decrease of y that means
the particle does not oscillate. Equation (4.5) represents a continuous
return of y from its maximum value to zero at t=co without oscillation.
This type of motion is called the overdamped or dead beat or aperiodic

motion.

(4.5)

y1
1- Overdamping
o 2- Critical damping Example:
g 3- Underdamping pie.
s Dead beat galvanometer,
E pendulum oscillating in a

viscous fluid, etc.




Then, the general solution of equation (4.1) is,

y = e~ vt 470t | po-(VpP-0)e] (4.3)

Case. II (Underdamped motion)
If p?<w?,the indices of “e” are imaginary and we get,
Where, =4/ (w? — p?)
y = e~ Pt[Aeift + Be~ift]

=e~ P[AcosOt + iAsinOt + BcosOt — iBsinft]

=e~ P[(A + B)cos6Ot + i(A — B)sin6t] (4.5)
Let, (A+B)=acosy and i (A-B)=asiny
a =+ a?cos?y + a?sin?y = /(A + B)?2 + i2(A — B)?

=vA2 + 2AB + B2 — A2 + 2AB — B2 = +2/AB

_asiny _i(A—B)
tany= acosy  (A+B)

Using the new constants in equation (4.5),

y = e~ P{acosy cosOt + asiny sinbt]

y=ae~ Pt[cosOtcosy + sinBtsiny]

=ae~ Pt cos(@t—y)

yzae‘ptcos[w/(a)2 — pz)t—y] (4.6)

In this case y alternates in sign and we have periodic
motion but the amplitude continuously diminishes due to
the factor e” P¢, This situation is called underdamping

with the amplitude @e™ P! and the frequency,/ (w? — p2).
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2 2- Critical damping
2 3- Underdamping
a,
S
<

=




Then, the general solution of equation (4.1) is,

= e‘pt[Ae(“pz_wz)t + Be_(V pz_wz)t]

y (4.3)

Case. III (Critical damping motion)
If PP=w?, (p? — w?) =0; S0, p? = W% p = w
From equation (4.3) we can write,
y = e~ “[4e + Be']
=e~ “[4 + B]

It implies that the oscillation is decaying without any damping factor.
It is not possible. So, the solution breaks down. Now, we have to
consider that p? is not quite equal to w?, but very close to each other.

Thus /p? — w? = h = 0 (close to zero but not zero).

From equation (Using the new constants in equation (4.3),

242 343
Rl | Rt +---)+
21 3l

+ .- )]: e_pt[A(l + ht)] + B(l — ht)]

y = e~ P[4e™ + Be ] = ¢~ Pt [A(l + ht +

242 3.3
B(1—ht+“ _ht
2! 3!

y=e~ P[A'+B"] (4.8)
At amplitude, y=y,,..=a (att=0)

Applying these two conditions in equation (4.8),
a=e’(A'+B'x0)>A'=a

% = —pe PY(A'+ B't) + e P'B’

[d—y] =—pe®(4'+ B' x 0) + e°B'=0
atcl _

=-pA'"+B' =0

= B'=pa

So, from equation (4.8)
y= e Pa + pat]

y= ae P1 + pt] (4.9)

This solution represents a continuous return of y from its
amplitude to zero. Although it looks like overdamped

motion it is a boundary between underdamped and
overdamped motion. Under this condition oscillatory
motion changes over to dead beat motion and vice versa.
Hence, this is called critical damping motion.

y=e~P[(A + B) + (A — B)ht] (4.7)

Let, A+B=A"and (A-B)h=B'




The Logarithmic Decrement

In the case of an underdamped motion the amplitude of the

. s : : . A, A, A A, A
motion reduces with time following a particular fashion. Let us I x =4 % 73 X . yi L x - = etxetx
calculate the decrement of the successive amplitudes at the
_ _ T = _ _ er X, e’up to nth term ; Here, n=1, 2, 3, .........
intervals of time t=— =—. Let the magnitudes of successive
amp1¥tudes b_e tAI, A, A, A, etc. Using the expression of A, JAFAHRHip o nth term A _m
amplitude ae™P* we get, An+1 il
At time t=0, A,=ae’ =a A,

, i = log, e =nA
_pT
Attimet====, 4 ,=ae 2
- L10g, 1 (4.10)
~ A ==log :
: 2 _ e
At time t=T =§, A,=aePT ne Ane
. 3T am spT J in equation (4.10) is called the logarithmic decrement.
Attime t=—=—, A,=ae 2
2 w A
+a

A, A, A pT
A_Z =7 === s =e 2 = constant =

2 3 Ay =
Since, pand T are constants for a given motion. E

<

. pT
Putting, —- =1 we have
é = A_2=i3’= =e}‘

A, = Ay A,
_a..
\ 4
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Amplitude
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Angular frequency of a damped oscillator, ®' =/ w? — p?
Since, w?= < and 2p=£; o= < - b22
m m m i4m

. . 1
Mechanical energy of a free oscillator, Ezgkaz =constant

b
Mechanical energy of a damped oscillator, £= %ka2 e 2Pt =%ka2 e m; [reduces with exponentially with time]

Prepared by: Dr. Mehnaz Sharmin, Department of Physics,
BUET, Dhaka-1000



