

Crystal Rirections

Dr. Mehnaz Sharmin Department of Physics Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

Miller Indices

Indices of Site, [[m n p]] 1. Indices of Direction, [m n p] 2. Indices of Plane, (h k l) 3. * Indices of negative directions are indicated by "⁻" bar sign. Example: [100], [110], etc. * Intercepts of the planes are used [100] describe a plane.

The Families of Crystal Directions

- In a crystal, there are infinite number of directions. Some of the directions form families.
- Some set of directions have identical spacing between the atoms, or we can say same unit translations. These are called equivalent directions.
- These equivalent directions form families of directions denoted as <hkl>.
- Example: In cubic crystals, the family <100> comprises of the directions
 [100], [010], [001], [100], [010], [001]
- Write down the directions from the family <110> and <111>.
 <a href="mailto:
 statical-static scalar-static-static-scalar-static-static-scalar-stati-scalar-static-scalar-static-scalar-static-scalar-static-scala

Table: The unit translations for low index directions of a cubic system

Family	Unit translation			
	Р	I	F	
(100)	а	а	а	
(110)	√2a	√2a	a/	
(111)	√За	√3a/2	√За	

Simple cubic

Body-centered cubic

Face-centered cubic

Angle between Two Crystal Directions in Cubic Structure

Dot product of two directions $[h_1k_1l_1]$ and $[h_2k_2l_2]$ is used.

 $cos\varphi = \frac{h_1h_2 + k_1k_2 + l_1l_2}{\left(h_1^2 + k_1^2 + l_1^2\right)^{1/2} \left(h_2^2 + k_2^2 + l_2^2\right)^{1/2}}$

Determination of angle between [111] and [001] directions in cubic structure

$$cos\varphi = \frac{0+0+1}{(3)^{1/2}(1)^{1/2}} = \frac{1}{\sqrt{3}}$$

 $\varphi = 54.75^{\circ}$

Problem: Calculate the angle between [111] and $[\overline{1}\overline{1}1]$ directions in cubic structure.

Answer: $\varphi = 109.5^{\circ}$

Fig. Angle between [111] and $[\overline{1}\overline{1}1]$ directions in cubic structure

How to find Miller Indices

- 1. First we have to find the intercepts with the axes along the basis vector \vec{a} , \vec{b} and \vec{c} . Let these intercepts of the plane be x, y, z. We form the fractional triplet $\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right)$.
- 2. Take reciprocal to this set $\left(\frac{a}{x}, \frac{b}{y}, \frac{c}{z}\right)$.
- 3. Then reduce this set to a similar one having the smallest integers multiplying by common factor.
- 4. This last set is enclosed in parentheses (h k l), is called the index of the plane or Miller Indices.

Example:

- 1. Let the intercepts are x = 2a, y = 3b/2, z = c.
- 2. We first form the set, $\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right) = \left(\frac{2a}{a}, \frac{3b}{2b}, \frac{c}{c}\right) = \left(2, \frac{3}{2}, 1\right)$
- 3. Taking the reciprocal, $\left(\frac{1}{2}, \frac{2}{3}, 1\right)$
- 4. Finally, multiply by a common (factor) denominator. Which is 6, to obtain the miller indices (h k l) = (3 4 6).

Crystallographic Planes

Crystallographic Planes

example		a	b	с
1.	Intercepts	1	1	8
2.	Reciprocals	1/1	1/1	1/∞
		1	1	0
3.	Reduction	1	1	0
4.	Miller Indices	(110)		
example		а	b	с
1.	Intercepts	1/2	x	œ
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3.	Reduction	2	0	0
4.	Miller Indices	(200)		

Miller Indices to Intercepts

1. Form a set:
$$\frac{1}{h}:\frac{1}{k}:\frac{1}{l}=p:q:r$$

2. Multiply with unit translation: pa:qb:rc

3. Eliminate fraction to form a set l_1 : l_2 : l_3

Here, l_1 , l_2 and l_3 are the intercepts along X, Y and Z axes, respectively.

Example: (hkl)=(112)	Example: (hkl)=(301)
Step-1: p:q:r= $\frac{1}{1}:\frac{1}{1}:\frac{1}{2}$	Step-1: p:q:r= $\frac{1}{3}:\frac{1}{0}:\frac{1}{1}$
Step-2: pa:qb:rc= $\frac{a}{1}:\frac{b}{1}:\frac{c}{2}$	Step-2: pa:qb:rc= $\frac{a}{3}:\frac{b}{0}:\frac{c}{1}=\frac{a}{3}:\infty:\frac{c}{1}$
Step-3: l_1 : l_2 : l_3 = 2a:2b:c (after multiplying by lcm)	Step-3: l ₁ : l ₂ : l ₃ = a:∞:3c (after multiplying by lcm)

Sample Problems

- In a crystal, a plane cuts intercepts of 2a, 3b and 6c along the three crystallographic axes. Determine the Miller indices of the plane. [Answer: (321)]
- Determine the Miller indices of a plane which is parallel to x-axis and cuts intercepts of 2 and ½ respectively along y and z-axes. [Answer: (014)]
- An orthorhombic crystal whose primitive translations are a=1.21 Å, b=1.84 Å and c=1.97 Å. If a plane (231) cuts an intercept of 1.21 Å along x-axis, find the length of intercepts along other two axes. [Answer: 1.23 Å, - 3.94 Å]
- Determine the Miller indices of plane that make the intercepts of 2 Å, 3 Å and 4 Å on the coordinate axes of the orthorhombic crystal with a:b:c=4:3:2.
 [Answer: (421)]
- Find the Miller indices of a plane that makes intercepts on a, b and c axes equal to 3 Å, 4 Å and 3 Å in a tetragonal crystal with c/a ratio 1.5. [Answer: (436)]
- Worked out problems in the book "Solid State Physics" by M. A. Wahab, 2nd ed, Page no. 25 - 27. Practice the problems in the exercise of the mentioned chapter.