Crystal Directions

Dr. Mehnaz Sharmin
Department of Physics
Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

Miller Indices

1. Indices of Site, [[m n p]]
2. Indices of Direction, [m n p]
3. Indices of Plane, (hkl)

* Indices of negative directions are indicated by "-" bar sign.

Example: [$\mathbf{1 0 0}],[\overline{\mathbf{1 1} 0}]$, etc.

* Intercepts of the planes are used describe a plane.

The Families of Crystal Directions

- In a crystal, there are infinite number of directions. Some of the directions form families.
- Some set of directions have identical spacing between the atoms, or we can say same unit translations. These are called equivalent directions.
- These equivalent directions form families of directions denoted as <hkl>.
- Example: In cubic crystals, the family <100> comprises of the directions [100], [010], [001], [$\overline{100]}$, [0̄ㅜ], [00 $\overline{1}]$
- Write down the directions from the family <110> and <111>.
<110> family has 12 members and <111> family has 8 members

Table: The unit translations for low index directions of a cubic system

Family	Unit translation		
	P	I	F
$\langle 100\rangle$	a	a	a
$\langle 110\rangle$	$\sqrt{2} a$	$\sqrt{2} a$	$a / \sqrt{2}$
$\langle 111\rangle$	$\sqrt{3} a$	$\sqrt{3} a / 2$	$\sqrt{3} a$

Simple cubic

Body-centered cubic

Face-centered cubic

Angle between Two Crystal Directions in Cubic Structure

Dot product of two directions $\left[h_{1} k_{1} l_{1}\right]$ and $\left[\mathrm{h}_{2} \mathrm{~K}_{2} \mathrm{l}_{2}\right]$ is used.

$$
\cos \varphi=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\left(h_{1}^{2}+k_{1}^{2}+l_{1}^{2}\right)^{1 / 2}\left(h_{2}^{2}+k_{2}^{2}+l_{2}^{2}\right)^{1 / 2}}
$$

Determination of angle between [111] and [001] directions in cubic structure $\cos \varphi=\frac{0+0+1}{(3)^{1 / 2}(1)^{1 / 2}}=\frac{1}{\sqrt{3}}$
$\varphi=54.75^{\circ}$
Problem: Calculate the angle between [111] and [$\overline{1} 11$] directions in cubic structure.

Answer: $\varphi=109.5^{\circ}$

Fig. Angle between [111] and [1̄11] directions in cubic structure

How to find Miller Indices

1. First we have to find the intercepts with the axes along the basis vector \vec{a}, \vec{b} and \vec{c}. Let these intercepts of the plane be x, y, z. We form the fractional triplet $\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right)$.
2. Take reciprocal to this $\operatorname{set}\left(\frac{a}{x}, \frac{b}{y}, \frac{c}{z}\right)$.
3. Then reduce this set to a similar one having the smallest integers multiplying by common factor.
4. This last set is enclosed in parentheses (h k l), is called the index of the plane or Miller Indices.

Example:

1. Let the intercepts are $x=2 a, y$ $=3 b / 2, z=c$.
2. We first form the set, $\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right)=$ $\left(\frac{2 \mathrm{a}}{\mathrm{a}}, \frac{3 \mathrm{~b}}{2 \mathrm{~b}}, \frac{\mathrm{c}}{\mathrm{c}}\right)=\left(2, \frac{3}{2}, 1\right)$
3. Taking the reciprocal, $\left(\frac{1}{2}, \frac{2}{3}, 1\right)$
4. Finally, multiply by a common (factor) denominator. Which is 6 , to obtain the miller indices (h $\mathrm{kl})=\left(\begin{array}{l}3 \\ 4\end{array}\right.$) .

Crystallographic Planes

Crystallographic Planes

example

a	b	c
1	1	∞

2. Reciprocals
$1 / 1 \quad 1 / 1 \quad 1 / \infty$
$1 \quad 1 \quad 0$
3. Reduction

110
4. Miller Indices
(110)

example	a	b	c
1.	Intercepts	$1 / 2$	∞
∞			
2.	Reciprocals	$1 / 1 / 2$	$1 / \infty$
		2	0
3.	Reduction	2	0
4.	Miller Indices	(200)	

3. Reduction

2
(200)

Miller Indices to Intercepts

1. Form a set: $\frac{1}{\mathrm{~h}}: \frac{1}{\mathrm{k}}: \frac{1}{1}=\mathrm{p}: \mathrm{q}: \mathrm{r}$
2. Multiply with unit translation: pa:qb:rc
3. Eliminate fraction to form a set $l_{1}: l_{2}: l_{3}$

Here, l_{1}, l_{2} and l_{3} are the intercepts along X, Y and Z axes, respectively.

```
Example: (hkl)=(112)
Step-1: p:q:r=\frac{1}{1}:\frac{1}{1}:\frac{1}{2}
Step-2: pa:qb:rc=\frac{a}{1}:\frac{b}{1}:\frac{c}{2}
Step-3: l: l l : l l = 2a:2b:c (after
multiplying by lcm)
```

Example: (hkl)=(301)

$$
\text { Step-1: p:q:r= } \frac{1}{3}: \frac{1}{0}: \frac{1}{1}
$$

$$
\text { Step-2: pa:qb:rc }=\frac{a}{3}: \frac{b}{0}: \frac{c}{1}=\frac{a}{3}: \infty: \frac{c}{1}
$$

$$
\text { Step-3: } l_{1}: l_{2}: l_{3}=a: \infty: 3 c \text { (after }
$$ multiplying by lcm)

Sample Problems

- In a crystal, a plane cuts intercepts of $2 a, 3 b$ and $6 c$ along the three crystallographic axes. Determine the Miller indices of the plane. [Answer: (321)]
- Determine the Miller indices of a plane which is parallel to x-axis and cuts intercepts of 2 and $1 / 2$ respectively along y and z-axes. [Answer: (014)]
- An orthorhombic crystal whose primitive translations are $a=1.21 \AA, b=1.84 \AA$ and $c=1.97 \AA$. If a plane ($23 \overline{1}$) cuts an intercept of $1.21 \AA$ along x-axis, find the length of intercepts along other two axes. [Answer: $1.23 \AA,-3.94 \AA$]
- Determine the Miller indices of plane that make the intercepts of $2 \AA, 3 \AA$ and $4 \AA$ on the coordinate axes of the orthorhombic crystal with $a: b: c=4: 3: 2$. [Answer: (421)]
- Find the Miller indices of a plane that makes intercepts on a, b and c axes equal to $3 \AA, 4 \AA$ and $3 \AA$ in a tetragonal crystal with c/a ratio 1.5. [Answer: (436)]
- Worked out problems in the book "Solid State Physics" by M. A. Wahab, 2nd ed, Page no. 25-27. Practice the problems in the exercise of the mentioned chapter.

