Crystal Systems

Dr. Mehnaz Sharmin Department of Physics Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

Two Dimensional Bravais Lattices Lattice parameters are a,b and ϕ

5 distinct types of lattices.

Symbols of Primitive and Non-primitive cell

- $\mathrm{P} \rightarrow$ Primitive (it has atoms only at the corners of the parallelepiped)
- A, B, C \rightarrow Base-centered (it has extra atom at the center of the base)
- I \rightarrow Body centered (From German word Innenzentriete)
- F \rightarrow Face-centered

Three Dimensional Bravais Lattices

Lattice parameters are $\mathbf{a}, \mathbf{b}, \mathbf{c}, \boldsymbol{\alpha}, \boldsymbol{\beta}$, and $\gamma, 14$ distinct types of lattices.

$\mathbf{a} \neq \mathrm{b} \neq \mathrm{c}, \boldsymbol{\alpha}=\gamma=\mathbf{9 0} \neq \boldsymbol{\beta},(\mathbf{P}, \mathrm{A})$

$\mathbf{a}=\mathbf{b} \neq \mathbf{c}, \boldsymbol{\alpha}=\boldsymbol{\beta}=\gamma=\mathbf{9 0}^{\circ},(\mathbf{P}, \mathrm{I})$

$$
\mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma \neq 90^{\circ},(\mathrm{P})
$$

$\mathbf{a}=\mathbf{b} \neq \mathbf{c}, \boldsymbol{\alpha}=\boldsymbol{\beta}=\mathbf{9 0}^{\circ}, \gamma=\mathbf{1 2 0}^{\circ}$, (Conventional)

Bravais lattice cells	Axes and interaxial angles	Examples
Cubic \mathbf{P} Cubic I	Three axes at right angles; all equal: $a=b=c ; \alpha=\beta=\gamma=90^{\circ}$	Copper (Cu), silver (Ag), sodium chloride (NaCl)
	Three axes at right angles; two equal: $a=b \neq c ; \alpha=\beta=\gamma=90^{\circ}$	White tin (Sn), rutile $\left(\mathrm{TiO}_{2}\right)$, β-spodumene ($\mathrm{LiAlSi}_{2} \mathrm{O}_{6}$)
	Three axes at right angles; all unequal: $a \neq \boldsymbol{b} \neq \boldsymbol{c} ; \alpha=\beta=\gamma=90^{\circ}$	Gallium (Ga), perovskite (CaTiO_{3})
Monoclinic \mathbf{P} Monoclinic C	Three axes, one pair not at right angles, of any lengths: $a \neq b \neq c ; \alpha=\gamma=90^{\circ} \neq \beta$	Gypsum ($\mathrm{CaSO}_{\mathbf{4}} \mathbf{* 2 H}_{\mathbf{2}} \mathrm{O}$)
Triclinic P	Three axes not at right angles, of any lengths: $a \neq b \neq c ; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Potassium chromate ($\mathrm{K}_{2} \mathrm{CrO}_{7}$)
Trigonal R (rhombohedral)	Rhombohedral: three axes equally inclined, not at right angles; all equal: $a=b=c ; \alpha=\beta=\gamma \neq 90^{\circ}$	Calcite (CaCO_{3}), arsenic (As), bismuth (Bi)
Trigonal and hexagonal C (or P)	Hexagonal: three equal axes coplanar at 120°, fourth axis at right angles to these: $\begin{gathered} \mathbf{a}_{1}=\mathbf{a}_{2}=\mathbf{a}_{\mathbf{3}} \neq \mathbf{c} \\ \alpha=\beta=9 \mathbf{c}_{;}^{\circ}, \gamma=120^{\circ} \end{gathered}$	Zinc (Zn), cadmium (Cd), quartz $\left(\mathrm{SiO}_{2}\right)$ [P]

$$
\text { Volume of a unit cell, } V=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})
$$

This relation is obtained by elementary vector analysis

Lattice system	Volume
Triclinic	$\mathrm{abc} \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma}$
Monoclinic	$\mathrm{abc} \sin \alpha$
Orthorhombic	abc
Tetragonal	$\mathrm{a}^{2} \mathrm{c}$
Rhombohedral	$\mathrm{a}^{3} \sqrt{1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha}$
Hexagonal	$\frac{\sqrt{3}}{2} \mathrm{a}^{2} \mathrm{c}$
Cubic	a^{3}

SC-coordination number

6

FCC-coordination number

$4+4+4=12$
BCC-coordination number

Characteristics of Cubic Crystals

Type of lattice	Simple cubic (SC)	Body centered cubic (BCC)	Face centered cubic (FCC)
Volume	a^{3}		
Lattice points per unit cell	1	2	4
Volume of the primitive cell	a^{3}	$\mathrm{a}^{3} / 2$	$\mathrm{a}^{3} / 4$
Lattice points per unit volume	$1 / \mathrm{a}^{3}$	$2 / \mathrm{a}^{3}$	$4 / \mathrm{a}^{3}$
Coordination number	6	8	12
Nearest neighbor distance	a	$\mathrm{a} / 3 / 2$	$\mathrm{a} / \sqrt{2}$
Number of 2 ${ }^{\text {nd }}$ nearest neighbors	12	6	6
$2^{\text {nd }}$ neighbor distance	$\sqrt{\|c\|} \mathrm{a}$	a	a
Packing factor	$\pi / 6=0.52$	$\sqrt{2 \pi} / 8=0.68$	$\sqrt{2 \pi / 6=0.74}$

