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Forced Oscillation

• The time period of a simple harmonic oscillator depends on
the dimensions of the body and its elastic properties.

• The vibration of such body die out with time due to the
dissipation of energy. (Damping)

• If some external periodic force is constantly applied on the
body, it continues to oscillate under the influence of such
external force. Such vibration of the body are called FORCED
VIBRATIONS.
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Ref: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.toppr.com%2Fcontent%2Fstory%2Famp%2Fexamples-of-free-and-forced-oscillations-

45608%2F&psig=AOvVaw0QUvG4i3fEtvVZatNjwRnR&ust=1591077297951000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKjvl4H33-kCFQAAAAAdAAAAABAg

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.quora.com%2FIs-there-a-term-or-explanation-for-unconsciously-showing-emotions-not-just-joy-or-sadness-many-that-don-t-match-what-you-re-
feeling&psig=AOvVaw0QUvG4i3fEtvVZatNjwRnR&ust=1591077297951000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKjvl4H33-kCFQAAAAAdAAAAABAy

Examples of Forced Oscillation
• Motion of a swing, musical instruments, stringed instruments, etc. 



Differential equation of a forced oscillator 

If damping is taken into consideration for an 

oscillator, then oscillator experiences 

(i) Restoring Force : 𝐹𝑟=−𝑘𝑦; 

(ii) Damping Force : 𝐹𝑑=−𝑏
𝑑𝑦

𝑑𝑡
; 

(iii)Let an external force is applied to the damped 

oscillator which given by, Fe= Fo 𝑒𝑖𝑞𝑡

(iv)We, therefore, can write the equation of the 

forced oscillation as, 𝐹=𝐹𝑑+ 𝐹𝑟+Fe

Combination of Hook’s law and Newton’s 2nd law 

of motion gives us, m
𝑑2𝑦

𝑑𝑡2 = -ky -𝑏
𝑑𝑦

𝑑𝑡
+ Fo𝑒𝑖𝑞𝑡
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m
𝑑2𝑦

𝑑𝑡2+ky +𝑏
𝑑𝑦

𝑑𝑡
=Fo𝑒𝑖𝑞𝑡

𝑑2𝑦

𝑑𝑡2+
𝑏

𝑚

𝑑𝑦

𝑑𝑡
+

𝑘

𝑚
y=

Fo
𝑚

𝑒𝑖𝑞𝑡

𝑑2𝑦

𝑑𝑡2+2p
𝑑𝑦

𝑑𝑡
+𝜔2y=𝑓𝑒𝑖𝑞𝑡 (6.1)

Equation (6.1) is a 2nd order 1st degree differential 

equation for forced vibration.

Where, 𝑓=
Fo
𝑚

is the amplitude of driving force per 

unit mass.
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Solution:

Let us consider the trials solution of equation (6.1),

y=A𝑒𝑖𝑞𝑡 (6.2)

Or,  
𝑑𝑦

𝑑𝑡
= Aiq𝑒𝑖𝑞𝑡

Or, 
𝑑2𝑦

𝑑𝑡2 = -q2A𝑒𝑖𝑞𝑡

Using these values in equation (6.1),

-q2A𝑒𝑖𝑞𝑡+ 2p Aiq𝑒𝑖𝑞𝑡+ 𝜔2A𝑒𝑖𝑞𝑡= 𝑓𝑒𝑖𝑞𝑡

Or, A[-q2+ 2ipq + 𝜔2]= 𝑓

Or, A = 
𝑓

(𝜔2−q2)+i2pq (6.3)

Let, (𝜔2−q2) = B cosφ and 2pq = B sinφ

B2 = B2 cos2φ + B2 sin2φ

= 4p2q2 + 𝜔2−q2 2

So, B= 4p2q2 + 𝜔2−q2 2

tanφ =
B sinφ
B cosφ=

2pq
(𝜔2−q2)

Substituting these values in the equation (6.3),

A = 
𝑓

B (cosφ +isinφ) =
𝑓

B𝑒𝑖φ

So, A = 
𝑓𝑒−𝑖φ

4p2q2 + 𝜔2−q2 2

Substituting A in equation (6.2), 

y = 
𝑓

4p2q2 + 𝜔2−q2 2

𝑒𝑖(𝑞𝑡−φ) (6.4) 

Equation(6.4) represents a SHM with the angular 

frequency q (same as the external or driving force). The 

forced SHM will be lagging behind the force by a phase φ. 
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Now, equation (6.1) is an inhomogeneous differential equation. Hence, y=A𝑒𝑖𝑞𝑡 is not really a complete
solution.

The solution will be complete if a complementary function is added which is a solution of the related
homogeneous equation,
𝑑2𝑦

𝑑𝑡2+2p
𝑑𝑦

𝑑𝑡
+𝜔2y= 0

Here, applying the boundary condition another solution can be obtained when Fo=0.

This corresponds to the oscillatory motion in presence of damping for which the solution is,

y =𝑎𝑒− 𝑝𝑡cos 𝜔2 − 𝑝2 𝑡− γ

Here, a and γ are the constants depending on the initial condition.

So, the general solution of the equation (6.1) is,

y =𝑎𝑒− 𝑝𝑡cos 𝜔2 − 𝑝2 𝑡− γ +
𝑓

4p2q2 + 𝜔2−q2 2

𝑒𝑖(𝑞𝑡−φ) (6.5)

The 1st part of the solution represent the initial damped oscillation with the angular frequency

𝜔2 − 𝑝2 and the amplitude decaying exponentially to zero. The 2nd part of the solution represents the
forced vibration with the angular frequency 𝑞 and the constant amplitude A.



Prepared by: Dr. Mehnaz Sharmin, Department of Physics, 
BUET, Dhaka-1000

7

Resonance
• When the forced frequency is equal to the natural frequency of oscillator the oscillation will have 

maximum amplitude and the state of oscillation of a system is called RESONANCE. The amplitude of a 

forced oscillator is A=
𝑓

4p2q2 + 𝜔2−q2 2

• “A” will be maximum when the denominator is the minimum. That means when,

𝑑

𝑑𝑞
[4p2q2 + 𝜔2−q2 2] = 0

Or, 8𝑝2𝑞 + 2 𝜔2−q2 (-2q) = 0

Or, - 4q [ 𝜔2−q2 - 2𝑝2] = 0

Or, 𝜔2−q2 - 2𝑝2 = 0  [since q ≠ 0]

Or, q2= 𝜔2- 2𝑝2

∴ q = 𝜔2− 2𝑝2 = 𝜔2 −
𝑏2

2𝑚2 [since, 𝜔2> 2𝑝2 and 2p=b/m]

The resonance frequency, fR =
𝜔2− 2𝑝2

2𝜋
, for which A is the maximum.



Prepared by: Dr. Mehnaz Sharmin, Department of Physics, 
BUET, Dhaka-1000

8

Sharpness of resonance:

Sharpness of resonance is referred to the fall
in amplitude with the change in frequency on
each side of the maximum amplitude.

The amplitude of a forced oscillator is

A=
𝑓

4p2q2 + 𝜔2−q2 2

(i) For small damping, damping constant p

is low and q=ω, Amax =
𝑓

2𝑝𝑞
. The

resonance curve is sharper.

(ii) For large damping p is high and
resonance curve is flat.

(iii) In absence of any damping force p=0,
amplitude of resonance is infinite.

Driving 
Frequency

A
m

p
lit

u
d

e
, A

𝑓𝑜

2
𝑓𝑜

3𝑓𝑜

2

𝑓
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R= 
mq2

4p2q2 + 𝜔2−q2 2

R will be maximum when, 𝑞 = ω ;     R= 
mq2

4p2q2 =
m

4p2

Since, 2p = b/m, R =
m3

b2

𝑅 ∝
1

𝑏2 ; Response is inversely proportional to square of damping 

co-efficient of the medium. In absence of damping R is maximum.

i. 
𝑞

𝜔
=1, R is maximum

ii. When b=0, R is infinite, 

Sharpness of resonance is maximum.

iii. Sharpness of resonance 

decreases with increase of b.

iv. Sharpness of resonance dies 

very rapidly even for a very 

small change in the value of  
𝑞

𝜔
from 1, where b is minimum.

Response:

The particular solution for displacement in the case of forced 
oscillation is,

𝑦 =
𝑓

4p2q2 + 𝜔2−q2 2

𝑒𝑖(𝑞𝑡−φ)

Differentiating equation of y with respect to time we get,

𝑑𝑦

𝑑𝑡
=

𝑓𝑞

4p2q2 + 𝜔2−q2 2

𝑒𝑖(𝑞𝑡−φ)

The velocity is maximum when 𝑒𝑖(𝑞𝑡−φ) is the maximum, that is 
the oscillator crosses the equilibrium position. So, 

𝑑𝑦

𝑑𝑡 𝑚𝑎𝑥
= 

𝑓𝑞

4p2q2 + 𝜔2−q2 2

Kinetic energy of the oscillator at the instant of crossing the 
equilibrium position is given by,

𝐾 =
1

2
𝑚

𝑑𝑦

𝑑𝑡 𝑚𝑎𝑥

2
= 

1

2
𝑚𝑓2𝑞2

4p2q2 + 𝜔2−q2 2

The mean square of the driving force per unit mass= 
0+𝑓2

2
=

𝑓2

2

Response, R=  
𝐾
𝑓2

2

= 
1

2
𝑚𝑓2𝑞2

4p2q2 + 𝜔2−q2 2 𝑓
2

2𝑚

= 
mq2

4p2q2 + 𝜔2−q2 2

b is large

b is less

b = 0
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Phase of resonance:

Considering the phase of the forced SHM,

tanφ =
2pq

(𝜔2−q2)

At resonance 𝜔2 = 𝑞2 and tanφ =  ∞    That is, φ =π/2 

Thus for  
𝑞

𝜔
= 1, φ = 

𝜋

2

For 
𝑞

𝜔
> 1, φ > 

𝜋

2

For 
𝑞

𝜔
< 1, φ <

𝜋

2

The shape of the curve will also depend on the value of b that is the external 

frictional forces.

i. For b=0, Curve ABCDE 

ii. For b very small , Curve 1

iii. For b very large , Curve 2

φ


