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• If a oscillation occurs flawlessly without any resistive force acting on it is 

called free oscillation.

• Any oscillation occurring in an air medium, experiences frictional force and 

consequent energy  dissipation occurs.

• The amplitude of oscillation decays continuously with time and finally 

diminishes. Such oscillation is called damped oscillation. 

• The dissipated energy appears as heat either within the oscillating system 

itself or in the surrounding medium. 
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Free Oscillation and Damped Oscillation



Characteristics of Damped Oscillation

• Frictional force acting on a body opposite to the direction of its motion is called

damping force.

• Damping force reduces the velocity and the kinetic energy of the moving body.

• Damping or dissipative forces generally arises due to the viscosity or friction in the

medium and are non-conservative in nature.

• When velocities of body are not high, damping force is found to be proportional to

velocity (v) of the particle

• The frequency of damped oscillator is always less than that of it’s natural or

undamped frequency.

• Amplitude of oscillation does not remain constant, rather it decays with time
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Free Oscillation and Damped Oscillation
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Differential equation of a damped oscillator 
If damping is taken into consideration for an oscillator, then oscillator 

experiences 

(i) Restoring Force : 𝐹𝑟=−𝑘𝑦; k=force constant

(ii) Damping Force : 𝐹𝑑=−𝑏
𝑑𝑦

𝑑𝑡
; b=damping constant

Where, y is the displacement of oscillating system and v is the velocity of 

this displacement. 

We, therefore, can write the equation of the damped harmonic oscillator 

as, 𝐹=𝐹𝑑+ 𝐹𝑟

From Newton’s 2nd law of motion, F= m
𝑑2𝑦

𝑑𝑡2

Combination of Hook’s law and Newton’s 2nd law of motion:

m
𝑑2𝑦

𝑑𝑡2= -ky - 𝑏
𝑑𝑦

𝑑𝑡

⇒ 
𝑑2𝑦

𝑑𝑡2 +
k
𝑚

y +
b
𝑚

𝑑𝑦

𝑑𝑡
= 0
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⇒ 
𝑑2𝑦

𝑑𝑡2 +2𝑝
𝑑𝑦

𝑑𝑡
+ω2y = 0 (4.1)

2𝑝= 
b
𝑚

= damping co-efficient of the medium.

p has the dimension of frequency referred to as 

damping frequency. 

Solution:

To solve equation (4.1) let us take the trial solution, 

𝑦 = 𝐴𝑒𝑚ʹ𝑡 (4.2)

Substituting this solution in equation (4.1) we get, 

𝑚ʹ2A𝑒𝑚ʹ𝑡+2p𝑚ʹ𝐴𝑒𝑚ʹ𝑡+𝜔2𝐴𝑒𝑚ʹ𝑡=0

⇒ 𝑚ʹ2y+ 2p𝑚ʹy+ 𝜔2y=0

⇒ 𝑚ʹ2+ 2p𝑚ʹ+ 𝜔2=0; [Quadratic equation]

Solving this equation for 𝑚ʹ we get,

𝑚ʹ=-
2𝑝± 4𝑝2−4𝜔2

2
=- 𝑝 ± 𝑝2 − 𝜔2



Various Conditions of Damped Oscillation

Then, the general solution of equation (4.1) is,

𝑦 = 𝑒− 𝑝𝑡 𝐴𝑒
𝑝2−𝜔2 𝑡

+ 𝐵𝑒
− 𝑝2−𝜔2 𝑡

(4.3)

Case. I (Overdamped motion)

If p2>ω2,the indices of “e” are real and we get,

𝑦 = 𝑒− 𝑝𝑡 𝐴𝑒α𝑡 + 𝐵𝑒−α𝑡 (4.4)

Where, α = 𝑝2 − 𝜔2

Now, let us replace A and B by two other constants C and δ

such that we can write, A= 
𝐶

2
𝑒δ and B= 

𝐶

2
𝑒−δ

Here, A+B=
𝐶

2
𝑒δ +

𝐶

2
𝑒−δ =

𝐶

2
𝑒δ + 𝑒−δ =

𝐶

2
2𝑐𝑜𝑠ℎ 𝛿

∴ 𝐴 + 𝐵 = 𝐶𝑐𝑜𝑠ℎδ

𝐴

𝐵
=

𝐶

2
𝑒δ

𝐶

2
𝑒−δ

= 𝑒2δ

Using the new constants in equation (4.4),

𝑦 = 𝑒− 𝑝𝑡 𝐶

2
𝑒δ𝑒α𝑡 +

𝐶

2
𝑒−δ𝑒−α𝑡
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= 
𝐶

2
𝑒−𝑝𝑡 𝑒(α𝑡+δ) + 𝑒−(α𝑡+𝛿)

= 
𝐶

2
𝑒− 𝑝𝑡 × 2 𝑐𝑜𝑠ℎ(𝛼𝑡 + 𝛿)

=C 𝑒− 𝑝𝑡𝑐𝑜𝑠ℎ(𝛼𝑡 + 𝛿)

So, 𝑦=C 𝑒−𝑝𝑡𝑐𝑜𝑠ℎ 𝑝2 − 𝜔2 𝑡 + 𝛿 (4.5)

Negative power of “e” indicates exponential decrease of y that means
the particle does not oscillate. Equation (4.5) represents a continuous
return of y from its maximum value to zero at t=∞ without oscillation.

This type of motion is called the overdamped or dead beat or aperiodic

motion.

0

y

A
m
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e
t

1- Overdamping
2- Critical damping
3- Underdamping

Example: 

Dead beat galvanometer, 

pendulum oscillating in a 

viscous fluid, etc.
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Then, the general solution of equation (4.1) is,

𝑦 = 𝑒− 𝑝𝑡 𝐴𝑒
𝑝2−𝜔2 𝑡

+ 𝐵𝑒
− 𝑝2−𝜔2 𝑡

(4.3)

Case. II (Underdamped motion)

If p2<ω2,the indices of “e” are imaginary and we get,

Where, 𝜃= 𝜔2 − 𝑝2

𝑦 = 𝑒− 𝑝𝑡 𝐴𝑒𝑖𝜃𝑡 + 𝐵𝑒−𝑖𝜃𝑡

=𝑒− 𝑝𝑡 𝐴𝑐𝑜𝑠𝜃𝑡 + 𝑖𝐴𝑠𝑖𝑛𝜃𝑡 + 𝐵𝑐𝑜𝑠𝜃𝑡 − 𝑖𝐵𝑠𝑖𝑛𝜃𝑡

=𝑒− 𝑝𝑡 (𝐴 + 𝐵)𝑐𝑜𝑠𝜃𝑡 + 𝑖(𝐴 − 𝐵)𝑠𝑖𝑛𝜃𝑡 (4.5)

Let, (A+B)=𝑎cosγ and i(A-B)=𝑎sinγ

𝑎 = 𝑎2𝑐𝑜𝑠2𝛾 + 𝑎2𝑠𝑖𝑛2𝛾 = 𝐴 + 𝐵 2 + 𝑖2 𝐴 − 𝐵 2

= 𝐴2 + 2𝐴𝐵 + 𝐵2 − 𝐴2 + 2𝐴𝐵 − 𝐵2 = ±2 𝐴𝐵

tan 𝛾=
𝑎sinγ
𝑎cosγ

=
i(A−B)
(A+B)

Using the new constants in equation (4.5),

𝑦 = 𝑒− 𝑝𝑡 𝑎cosγ 𝑐𝑜𝑠𝜃𝑡 + 𝑎sin𝛾sin𝜃𝑡

y =𝑎𝑒− 𝑝𝑡 𝑐𝑜𝑠𝜃𝑡cosγ + sin𝜃𝑡sin𝛾

=𝑎𝑒− 𝑝𝑡cos(𝜃𝑡− γ)

y =𝑎𝑒− 𝑝𝑡cos 𝜔2 − 𝑝2 𝑡− γ (4.6)

In this case y alternates in sign and we have periodic
motion but the amplitude continuously diminishes due to
the factor 𝑒− 𝑝𝑡 . This situation is called underdamping

with the amplitude 𝑎𝑒− 𝑝𝑡 and the frequency 𝜔2 − 𝑝2 .
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1- Overdamping
2- Critical damping
3- Underdamping
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Then, the general solution of equation (4.1) is,

𝑦 = 𝑒− 𝑝𝑡 𝐴𝑒
𝑝2−𝜔2 𝑡

+ 𝐵𝑒
− 𝑝2−𝜔2 𝑡

(4.3)

Case. III (Critical damping motion)

If p2= ω2, 𝑝2 − 𝜔2 = 0; So, 𝑝2 = 𝜔2, 𝑝 = 𝜔

From equation (4.3) we can write,

𝑦 = 𝑒− 𝜔𝑡 𝐴𝑒0 + 𝐵𝑒0

=𝑒− 𝜔𝑡 𝐴 + 𝐵

It implies that the oscillation is decaying without any damping factor.
It is not possible. So, the solution breaks down. Now, we have to
consider that 𝑝2 is not quite equal to ω2, but very close to each other.

Thus 𝑝2 − 𝜔2 = ℎ ≈ 0 (close to zero but not zero).

From equation (Using the new constants in equation (4.3),

𝑦 = 𝑒− 𝑝𝑡 A𝑒ℎ𝑡 + 𝐵𝑒−ℎ𝑡 = 𝑒− 𝑝𝑡 ቂ

ቃ

A 1 + ℎ𝑡 +
ℎ2𝑡2

2!
+

ℎ3𝑡3

3!
+ ⋯ +

𝐵 1 − ℎ𝑡 +
ℎ2𝑡2

2!
−

ℎ3𝑡3

3!
+ ⋯ = 𝑒− 𝑝𝑡 𝐴(1 + ℎ𝑡) + 𝐵(1 − ℎ𝑡)]

y=𝑒− 𝑝𝑡 𝐴 + 𝐵 + 𝐴 − 𝐵 ℎ𝑡 (4.7)

Let, A+B=Aʹ and (A-B)h=Bʹ

y=𝑒− 𝑝𝑡[Aʹ +Bʹt] (4.8)

At amplitude, y=ymax= 𝑎 (at t=0)

Applying these two conditions in equation (4.8),

𝑎=𝑒0(𝐴ʹ + 𝐵ʹ × 0)⇒ 𝐴ʹ= 𝑎

𝑑𝑦

𝑑𝑡
= −𝑝𝑒− 𝑝𝑡 𝐴ʹ + 𝐵ʹ𝑡 + 𝑒−𝑝𝑡𝐵ʹ

𝑑𝑦

𝑑𝑡
t=0

=−𝑝𝑒0 𝐴ʹ + 𝐵ʹ × 0 + 𝑒0𝐵ʹ=0

⇒ -𝑝𝐴ʹ + 𝐵ʹ = 0

⇒ 𝐵ʹ= 𝑝𝑎

So, from equation (4.8)

y= 𝑒−𝑝𝑡 𝑎 + 𝑝𝑎𝑡

y= 𝑎𝑒−𝑝𝑡 1 + 𝑝𝑡 (4.9)

This solution represents a continuous return of y from its
amplitude to zero. Although it looks like overdamped
motion it is actually a boundary between underdamped
and overdamped motion. Under this condition oscillatory
motion changes over to dead beat motion and vice versa.
Hence, this is called critical damping motion.



The Logarithmic Decrement
In the case of an underdamped motion the amplitude of the
motion reduces with time following a particular fashion. Let us
calculate the decrement of the successive amplitudes at the

intervals of time t=
T
2

=
𝜋

𝜔
. Let the magnitudes of successive

amplitudes be A1, A2, A3,, A4, etc. Using the expression of
amplitude 𝑎𝑒−𝑝𝑡 we get,

At time t=0, A1=𝑎𝑒0 = 𝑎

At time t=
T
2

=
𝜋

𝜔
, A2=𝑎𝑒−

𝑝𝑇

2

At time t=𝑇 =
2𝜋

𝜔
, A3=𝑎𝑒−𝑝𝑇

At time t=
3T

2
=

3𝜋

𝜔
, A4=𝑎𝑒−

3𝑝𝑇

2

∴
A1
A2

=
A2
A3

=
A3
A4

= ………….. =𝑒
𝑝𝑇

2 = constant

Since, p and T are constants for a given motion.

Putting,
𝑝𝑇

2
= λ we have

A1
A2

=
A2
A3

=
A3
A4

= ………….. =𝑒λ
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A1
A2

×
A2
A3

×
A3
A4

× ………
An−1
A𝑛

×
An

A𝑛+1
= 𝑒λ × 𝑒λ ×

𝑒λ ×………𝑒λup to nth term ; Here, n=1, 2, 3, ………

∴
A1

A𝑛+1
= 𝑒λ+λ+λ+………up to nth term ⇒

A1
A𝑛+1

= 𝑒𝑛λ

⇒ 𝑙𝑜𝑔𝑒
A1

A𝑛+1
=𝑛λ

∴ λ =
1

𝑛
𝑙𝑜𝑔𝑒

A1
A𝑛+1

(4.10)

λ in equation (4.10) is called the logarithmic decrement.



• Angular frequency of a damped oscillator, ωʹ = 𝜔2 − 𝑝2

• Since, 𝜔2 = 
𝑘

𝑚
and 2𝑝= 

b
𝑚

; ωʹ =
𝑘

𝑚
−

𝑏2

4𝑚2

• Mechanical energy of a free oscillator, E=
1

2
k𝑎2 =constant

• Mechanical energy of a damped oscillator, E=
1

2
k𝑎2e−2𝑝𝑡= 

1

2
k𝑎2e−

𝑏

𝑚
𝑡; [reduces with exponentially with time]
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Fundamentals of Physics – David Halliday, Robert Resnick, and Jearls Walker (6th Ed.), Chapter:16, page no. 361

Solution:

b= 0.07kg/s , km= (85N/m)(0.25 kg) =4.6 

kg/s; Thus, b<< km (~66 times less)

(a) T=
2𝜋

𝜔
= 2𝜋

𝑚

𝑘
=2𝜋

0.25 𝑘𝑔

85 𝑀/𝑚
= 0.34 s

(b) 𝐴 = 𝑎𝑒−𝑝𝑡=𝑎𝑒−
𝑏𝑡

2𝑚

Now, 𝑎𝑒−
𝑏𝑡

2𝑚 =
𝑎

2
⇒𝑒−

𝑏𝑡

2𝑚=
1

2

⇒loge 𝑒
−

𝑏𝑡

2𝑚
= loge

1

2

⇒ −
𝑏𝑡

2𝑚
=loge

1

2

So, t=
−2𝑚loge

1

2

𝑏
=

−(2)(0.25 𝑘𝑔)loge
1

2

0.070 𝑘𝑔/𝑠
= 5.0 s

In terms of T: (5.0/0.34)=14.75 T≈15 T

(c) E= 
1

2
k𝑎2e−

𝑏𝑡

𝑚

1

2
k𝑎2e−

𝑏𝑡

𝑚=
1

2
(

1

2
k𝑎2)⇒e−

𝑏𝑡

𝑚=
1

2

t=  
−𝑚loge

1

2

𝑏
= 

−(0.25 𝑘𝑔)loge
1

2

0.070 𝑘𝑔/𝑠
= 2.5 s

In terms of T: (2.5/0.34)=7.35 T≈7.5 T


