SOUND

Lecture No. 1

Topics: Simple Harmonic Motion and related systems

Teacher's name: Dr. Mehnaz Sharmin

Characteristics of simple harmonic motion (SHM)

- It is a periodic motion.
- The acceleration of the particle (force on the particle) is directly proportional to its displacement.
- Force on the particle (acceleration of the particle) is directed towards its equilibrium position.
- The total energy of the particle executing SHM is conserved.
- The maximum displacement of the particle on either sides of the equilibrium position is the same.

Restoring Force

- Restoring force is a force which acts to bring a body to its equilibrium position.
- It is a function only of position of the particle.
- It is always directed back toward the equilibrium position of the system.

Hooke's law

- If a force (F) needed to extend or compress a spring or to displace a body by some distance (y) from its equilibrium position, then F is proportional to y. So, $F \propto-y$ or, is, $F=-k y$. (-ve sign indicates that F is directed opposite to y)
- Here k is a constant factor, known as the force constant. When $y=1, F=-k$
- k is defined as the amount of restoring force required to produce unit displacement.

Differential equation of a simple harmonic oscillator

Hooke's law, $F=-k y$
$\mathrm{F}=$ restoring force, $k=$ force constant
Newton's $2^{\text {nd }}$ law of motion,

$$
\begin{equation*}
\Rightarrow\left(\frac{d y}{d t}\right)^{2}=-\omega^{2} y^{2}+C \tag{1.3}
\end{equation*}
$$

$F=$ mass \times acceleration $=m \frac{d^{2} y}{d t^{2}}$
Here, $\mathrm{C}=$ constant for integration. Now, applying boundary
Combination of Hooke's law and Newton's $2^{\text {nd }}$ law of motion:
$F=-k y=m \frac{d^{2} y}{d t^{2}}$
conditions, at $\mathrm{y}_{\max }=a, \frac{d y}{d t}=0$ [since, kinetic energy is zero at
$\Rightarrow m \frac{d^{2} y}{d t^{2}}+k y=0$
$\Rightarrow \frac{d^{2} y}{d t^{2}}+\frac{k}{m} y=0$

$$
\begin{equation*}
\omega=\sqrt{\frac{k}{m}}=\text { angular frequency } \tag{1.1}
\end{equation*}
$$

$\therefore \frac{d^{2} y}{d t^{2}}+\omega^{2} y=0$
Equation (1.2) is the differential equation of a simple harmonic oscillator.
Solution:
Rewriting equation (1.2), $\quad \frac{d^{2} y}{d t^{2}}=-\omega^{2} y$ maximum displacement].
From equation (1.3) we get, $0=-\omega^{2} a^{2}+C$
So, $\mathrm{C}=\omega^{2} a^{2}$
Now, $\left(\frac{d y}{d t}\right)^{2}=\omega^{2}\left(a^{2}-y^{2}\right)$
$\Rightarrow \frac{d y}{d t}= \pm \omega \sqrt{\left(a^{2}-y^{2}\right)}$
$\Rightarrow \int \frac{d y}{\sqrt{\left(a^{2}-y^{2}\right)}}=\omega \int d t$
$\Rightarrow \sin ^{-1} \frac{y}{a}=\omega t+\varphi$
$\therefore y=a \sin (\omega t+\varphi)$

Various Equations Related to SHM

Equations of Displacement

- $y=a \sin (\omega t+\varphi)$
- $y=a \sin \omega t \cos \varphi+a \cos \omega t \sin \varphi$
- $y=A \sin \omega t+B \cos \omega t$

Assuming,
$\operatorname{acos} \varphi=A$ $a \sin \varphi=B$

- Velocity, $\frac{d y}{d t}=\frac{d}{d t}[a \sin (\omega t+\varphi)]=\omega \operatorname{acos}(\omega t+\varphi)$

$$
\begin{align*}
& \text { Or, } \frac{d y}{d t}=\omega a \sqrt{\left.1-\sin ^{2}(\omega t+\varphi)\right)} \\
& \text { Or, } \frac{d y}{d t}=\omega \sqrt{\left.a^{2}-a^{2} \sin ^{2}(\omega t+\varphi)\right)} \\
& \text { Or, } \frac{d y}{d t}=\omega \sqrt{\left(a^{2}-y^{2}\right)} \tag{1.7}
\end{align*}
$$

- Maximum velocity, $\left(\frac{d y}{d t}\right)_{\max }=\omega a$
(1.8) [When, $y=0$]
- Minimum velocity, $\left(\frac{d y}{d t}\right)_{\min }=0 \quad[$ When, $y=a]$
- Acceleration, $\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d}{d t}[\omega \operatorname{acos}(\omega t+\varphi)]$

$$
\begin{align*}
& \text { Or, } \frac{d^{2} y}{d t^{2}}=-\omega^{2} a \sin (\omega t+\varphi) \\
& \text { So, } \frac{d^{2} y}{d t^{2}}=-\omega^{2} y \tag{1.9}
\end{align*}
$$

- Maximum Acceleration

$$
\left.\left(\frac{d^{2} y}{d t^{2}}\right)_{\max }=-\omega^{2} a \quad \text { (1.10) [When, } y=a\right]
$$

- Minimum Acceleration

$$
\left(\frac{d^{2} y}{d t^{2}}\right)_{\min }=0 \quad[\text { When, } y=0]
$$

Various Equations Related to SHM

Time period

The equation of particle displacement at the time t is,

$$
y=a \sin (\omega t+\varphi)
$$

The equation of particle displacement at the time $\left(t+\frac{2 \pi}{\omega}\right)$ is,

$$
\begin{aligned}
y & =a \sin \left[\omega\left(\mathrm{t}+\frac{2 \pi}{\omega}\right)+\varphi\right) \\
& =a \sin (\omega \mathrm{t}+2 \pi+\varphi) \\
& =a \sin (\omega \mathrm{t}+\varphi)
\end{aligned}
$$

The equation of particle displacement at the time $\left(\mathrm{t}+\frac{2 \pi}{\omega}\right)$ is the same as that at time t . So, it can be said that the motion is repeated after every $\frac{2 \pi}{\omega}$ seconds.

Time period, $\mathrm{T}=\frac{2 \pi}{\omega}$

Since, Angular frequency, $\omega=\sqrt{\frac{k}{m}}$

$$
\begin{equation*}
\mathrm{T}=2 \pi \sqrt{\frac{m}{k}} \tag{1.10}
\end{equation*}
$$

- Initial phase, φ
- If at $\mathrm{t}=0, \mathrm{y}=0$, then $\varphi=0$; (counting is started at the equilibrium) $y=a \sin \omega t$
- If $\mathrm{t}=0, \mathrm{y}=a$, then $\varphi=\pi / 2$; (counting is started at the amplitude) $\mathrm{y}=a \sin (\omega t+\pi / 2)=a \cos \omega t$
- If $\mathrm{t}=\mathrm{t}^{\prime}, \mathrm{y}=0$, (counting is started before the equ. position) then, $\mathrm{y}=a \sin (\omega t-e)$
- If $\mathrm{t}=\mathrm{t}^{\prime}, \mathrm{y}=0$, (counting is started after the equ. position) then, $\mathrm{y}=a \sin (\omega t+e)$

