Sound

Lecture No. 2
Topics: Energy of a Simple Harmonic Oscillator, Examples of SHM Teacher's name: Dr. Mehnaz Sharmin

Total energy of a particle executing SHM

- If no non-conservative forces (like friction) act on the oscillator the total energy of the particle will be,

$$
\mathrm{E}=\mathrm{K}+\mathrm{U}=\text { constant }
$$

- Kinetic energy, $\mathrm{K}=\frac{1}{2} m\left(\frac{d y}{d t}\right)^{2}=\frac{1}{2} m[\omega \operatorname{acos}(\omega t+\varphi)]^{2}$

$$
\begin{aligned}
& =\frac{1}{2} m \omega^{2} a^{2} \cos ^{2}(\omega t+\varphi) \\
& =\frac{1}{2} k a^{2} \cos ^{2}(\omega t+\varphi) \quad\left[\because m \omega^{2}=k\right]
\end{aligned}
$$

- Potential energy, $\mathrm{U}=\int_{0}^{y} m\left(\frac{d^{2} y}{d t^{2}}\right) d y$

$$
\begin{aligned}
& =\int_{0}^{y} m\left(\omega^{2} y\right) d y=\frac{1}{2} m \omega^{2} y^{2} \\
& =\frac{1}{2} m \omega^{2} a^{2} \sin ^{2}(\omega t+\varphi) \\
& =\frac{1}{2} k a^{2} \sin ^{2}(\omega t+\varphi)
\end{aligned}
$$

- $\mathrm{E}=\frac{1}{2} k a^{2}\left[\cos ^{2}(\omega t+\varphi)+\sin ^{2}(\omega t+\varphi)\right]=\frac{1}{2} k a^{2}=\mathrm{constant}$

Average energy of a particle executing SHM

- Average kinetic energy, $\mathrm{K}_{\mathrm{avg}}=\frac{1}{T} \int_{0}^{T} \frac{1}{2} k a^{2} \cos ^{2}(\omega t+\varphi) d t=\frac{k a^{2}}{4 T} \int_{0}^{T} 2 \cos ^{2}(\omega t+\varphi) d t$

$$
\begin{aligned}
& =\frac{k a^{2}}{4 T} \int_{0}^{T}[1+\cos 2(\omega t+\varphi)] d t \\
& =\frac{k a^{2}}{4 T}\left[\int_{0}^{T} d t+\int_{0}^{T} \cos 2(\omega t+\varphi) d t\right] \\
& =\frac{k a^{2}}{4 T}[t]_{0}^{T}+\frac{k a^{2}}{4 T} \times 0 \\
& =\frac{1}{4} k a^{2}
\end{aligned}
$$

- Average potential energy, $\mathrm{U}_{\mathrm{avg}}=\frac{1}{T} \int_{0}^{T} \frac{1}{2} k a^{2} \sin ^{2}(\omega t+\varphi) d t=\frac{k a^{2}}{4 T} \int_{0}^{T} 2 \sin ^{2}(\omega t+\varphi) d t$

$$
\begin{aligned}
& =\frac{k a^{2}}{4 T} \int_{0}^{T}[1-\cos 2(\omega t+\varphi)] d t \\
& =\frac{k a^{2}}{4 T}\left[\int_{0}^{T} d t-\int_{0}^{T} \cos 2(\omega t+\varphi) d t\right] \\
& =\frac{k a^{2}}{4 T}[t]_{0}^{T}-\frac{k a^{2}}{4 T} \times 0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{T} \cos 2(\omega t+\varphi) d t \\
& =\frac{1}{2}[\sin 2(\omega t+\varphi)]_{0}^{T} \\
& =\frac{1}{2}[\sin 2(\omega T+\varphi)-\sin 2 \varphi] \\
& =\frac{1}{2}\left[\sin 2\left(\omega \frac{2 \pi}{\omega}+\varphi\right)-\sin 2 \varphi\right] \\
& =\frac{1}{2}[\sin 2(2 \pi+\varphi)-\sin 2 \varphi] \\
& =\frac{1}{2}[\sin 2 \varphi-\sin 2 \varphi] \\
& =0
\end{aligned}
$$

$$
=\frac{1}{4} k a^{2}
$$

Spring-mass System

Hooke's law for extended spring, $F=-k \Delta I$
$\mathrm{K}=$ spring constant, $\Delta l=$ extension, $l=$ length of the spring [Fig (a)]

From Fig (b)Weight, $m g=k \Delta l$
The Fig (c), The upward force the spring exerts on the body is $k(\Delta l+y)$

The downward force acting on the body is $m g$.

Torsional pendulum

Differential equation:

Hooke's law for angular motion,

$$
\tau=-\kappa \theta
$$

$\kappa=$ torsional spring constant
Newton's $2^{\text {nd }}$ law for angular motion,

$$
\tau=I \alpha=I \frac{d^{2} \theta}{d t^{2}}
$$

Equating expressions,

$$
\begin{aligned}
&-\kappa \theta=I \frac{d^{2} \theta}{d t^{2}} \\
& \frac{d^{2} \theta}{d t^{2}}+\frac{\kappa}{I} \theta=0
\end{aligned}
$$

Solution of the diff. equation

$$
\theta=\theta_{m} \sin (\omega t+\varphi)
$$

$\theta=$ angular displacement
$\theta_{m}=$ angular amplitude
$\omega=$ angular frequency $=\sqrt{\frac{\kappa}{I}}$
Time period, $\mathrm{T}=2 \pi \sqrt{\frac{1}{\kappa}}$

Two-Body Oscillations

- In microscopic world, many objects such as nuclei, atoms, molecules, etc. execute oscillations that are approximately SHM.
- Example: Diatomic molecule in which 2 atoms are bonded together with a force. Above absolute zero temperature, the atoms vibrate continuously about their equilibrium positions.
- We can compare such a molecule with a system where the atoms can be considered as two particles with different masses connected by a spring.

Let the molecules can be represented by two masses m_{1} and m_{2} connected to each other by a spring of force constant k as shown in Fig 4(a).

The motion of the system can be described in terms of the separate motions of the two particles which are located relative to the origin 0 by the two coordinates x_{1} and x_{2} in Fig. 4(a).

The relative separation $\left(x_{1}-x_{2}\right)$ gives the length of the spring at any time.

The un-stretched length of the spring is L.

The change in length of the spring is given by,

$$
\begin{equation*}
x=\left(x_{1}-x_{2}\right)-L \tag{4.1}
\end{equation*}
$$

The magnitude of the force that the spring exerts on each particle is,

$$
\begin{equation*}
F=k x \tag{4.2}
\end{equation*}
$$

If the spring exerts a force $-\vec{F}$ on m_{1}, then it exerts a force \vec{F} on m_{2}.

Fig. 4(a)

Fig. 4(b)
Taking the force component along the X -axis, let us apply Newton's $2^{\text {nd }}$ law of motion separately to the two particles,

$$
\begin{align*}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-k x \tag{4.3}\\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}=k x \tag{4.4}
\end{align*}
$$

Multiplying equation (4.3) by m_{2} and equation (4.4) by m_{1}

$$
\begin{align*}
& m_{1} m_{2} \frac{d^{2} x_{1}}{d t^{2}}=-m_{2} k x \tag{4.5}\\
& m_{1} m_{2} \frac{d^{2} x_{2}}{d t^{2}}=m_{1} k x \tag{4.6}
\end{align*}
$$

Subtracting, equation (4.6) from equation (4.5),

$$
\begin{align*}
& m_{1} m_{2} \frac{d^{2} x_{1}}{d t^{2}}-m_{1} m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-m_{2} k x-m_{1} k x \\
& \Rightarrow m_{1} m_{2} \frac{d^{2}}{d t^{2}}\left(x_{1}-x_{2}\right)=-k x\left(m_{1}+m_{2}\right) \\
& \Rightarrow \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} \frac{d^{2}}{d t^{2}}\left(x_{1}-x_{2}\right)=-k x \tag{4.7}
\end{align*}
$$

The quantity $\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}$ has the dimension of mass. This quantity is known as the reduced mass of the system and it is denoted by μ.

$$
\begin{equation*}
\mu=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} \tag{4.8}
\end{equation*}
$$

Reduced mass of a system is always smaller than either of the masses of the system. $\left(\mu<m_{1}\right.$ and $\left.\mu<m_{2}\right)$

Since, the un-stretched length of the spring is constant the derivative of $\left(x_{1}-x_{2}\right)$ are the same as the derivative of x.

$$
\frac{d^{2}}{d t^{2}}\left(x_{1}-x_{2}\right)=\frac{d^{2}}{d t^{2}}(x+L)=\frac{d^{2} x}{d t^{2}}[\text { from equation (4.1)] }
$$

So, from equation (4.7) we get,

$$
\begin{align*}
& \mu \frac{d^{2} x}{d t^{2}}=-k x \\
& \Rightarrow \frac{d^{2} x}{d t^{2}}+\frac{k}{\mu} x=0 \tag{4.9}
\end{align*}
$$

Here, angular frequency is, $\omega=\sqrt{\frac{k}{\mu}}$; So, time period, $T=2 \pi \sqrt{\frac{\mu}{k}}$
Equation (4.9) is identical to the differential equation of SHM of a single body oscillator.

