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Definition: Stationary or standing wave is one in which crests and troughs (for transverse) or compressions and

rarefactions (for longitudinal) do not change their location in space.

Figure: Stationary waves

• Stationary waves are produced when two progressive waves, having the same amplitudes and periods

superimpose while travelling in opposite directions with the same velocity.

• In the figure, the points “N” are called nodes where the amplitude of the oscillation is zero. The points “A” are

called antinodes where the amplitude of the particles is maximum.
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• The stationary waves are formed because of the
superposition of a wave and its reflected wave.

• This wave does not appear to travel in space, They
do not propagate energy.

• All particles except at the nodes vibrate simple
harmonically with time period equal to that of each
component wave.

• Particles on the either side of the node vibrate in
opposite phase and those Particles on the either
side of the antinode vibrate in the same phase.

• The amplitude of vibration of the particles
gradually increases between zero and maximum
from node to antinode.

• The whole medium is split into segments and all
the particles of the same segment vibrate in phase.
The particles in one segment have a phase
difference of π with those in the neighboring
segment.

• For a longitudinal stationary wave the pressure
(density) variations are maximum at the node and
minimum at the antinode.

• Amplitude of vibration of the particles is a function
of position and phase of vibration of particles is a
function of time.

• Strain is maximum at the nodes and minimum at
the antinode. Energy associated with the vibration
is maximum at the antinode and minimum at the
node.
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The equations of two waves are as follows-

y1= a sin
2𝜋

𝜆
(vt-x) (9.1)

y2= b sin
2𝜋

𝜆
(vt-x+φ) (9.2)

When they meet each other from the opposite
directions, the resultant wave equation becomes

y= y1+ y2= a sin
2𝜋

𝜆
(vt-x) + b sin

2𝜋

𝜆
(vt-x+φ)

= asin
2𝜋

𝜆
(vt-x) + bsin

2𝜋

𝜆
(vt-x)cosφ + bcos

2𝜋

𝜆
(vt-x)sinφ

= [sin
2𝜋

𝜆
(vt-x)] (a + bcosφ) + [cos

2𝜋

𝜆
(vt-x)](bsinφ)

Let, a + bcosφ = Acosθ

and bsinφ = Asinθ

∴ A= A2cos2θ + A2sin2θ = 𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠φ

and θ= tan-1
bsinφ

𝑎+𝑏𝑐𝑜𝑠φ

∴ y= [sin
2𝜋

𝜆
(vt-x)] (Acosθ) + [cos

2𝜋

𝜆
(vt-x)](Asinθ)

= A sin
2𝜋

𝜆
[(vt-x)+ θ] (9.3)

Special cases

i. When phase difference φ=0, 2π, 4π,……………=2nπ;
where, n=0, 1, 2,……

cosφ = 1

A= 𝑎2 + 𝑏2 + 2𝑎𝑏= a+b (Amplitude is maximum)

This is the case of constructive interference where
two waves reinforce each other.

If a=b, A=2a, intense sound is heard.

ii.When φ=π, 3π, 5π ……=(2n+1)π; where, n=0, 1, 2,……

cosφ = -1

A= 𝑎2 + 𝑏2 − 2𝑎𝑏= a-b (Amplitude is minimum)

This is the case of destructive interference and feeble
sound will be produced.

If a=b, A=0, no sound is heard.
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Figure: Interference of sound wave

Intensity of resultant wave is

I∝ 𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠φ 2=𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠φ

If a=b,

I ∝ 𝑎2+𝑎2 + 2𝑎2𝑐𝑜𝑠𝜑 = 2𝑎2(1+cosφ)

= 2𝑎2 ×2cos2φ/2

= 4𝑎2cos2φ/2

For constructive interference: Imax=4𝑎2

For destructive interference: Imin=0
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The equations of two waves with slightly different
frequencies, travelling along the same path in the same
direction are as follows-

y1= a sinω1t (9.4) [ω1=2πn1]

y2= b sin ω2t (9.5) [ω2=2πn2]

According to the principle of superposition,

y= y1+ y2= a sin ω1t + b sin ω2t

= a sin ω1t + b sin [ω1-(ω1-ω2)]t

= a sin ω1t + b sinω1t cos(ω1-ω2)t – b cosω1t sin(ω1-ω2)t

= sin ω1t [a + b cos(ω1-ω2)t] - cosω1t [b sin(ω1-ω2)t]

Let, a + b cos(ω1-ω2)t = A cosθ

and b sin(ω1-ω2)t = A sinθ

∴ y = sin ω1t A cosθ - cosω1t A sinθ

y = A sin (ω1t- θ) (9.6)

Resultant amplitude:

A2 cos2θ + A2 sin2θ = [a + b cos(ω1-ω2)t]
2

+ [b sin(ω1-ω2)t]
2

Or, A2= a2+ b2 cos2 (ω1-ω2)t + 2abcos(ω1-ω2)t
+ b2 sin2 (ω1-ω2)t

Or, A2= a2+ b2+ 2abcos(ω1-ω2)t

∴ A = a2+ b2+ 2abcos(ω1−ω2)t (9.7)

Phase angle of the resultant wave:

tanθ =
As𝑖𝑛θ
A𝑐𝑜𝑠θ =

b sin(ω1−ω2)t
a + b cos(ω1−ω2)t

∴ θ = tan-1 b sin(ω1−ω2)t
a + b cos(ω1−ω2)t

(9.8)

Amplitude and phase angle of the resultant
wave both changes with time.

Beats
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Case-I

When (ω1-ω2)t = 2π(n1-n2) t = 2kπ; where k=0, 1, 2, ……

The resultant amplitude is then

A = a2+ b2+ 2ab = (a+b)2 = (a+b)

Thus the resultant amplitude is maximum. Since, intensity ∝
(amplitude)2 the intensity of sound will be maximum.

When t =
2kπ

2π(n1−n2)
=

k
(n1−n2)

That is, at the time instant 0,
1

(n1−n2)
,

2

(n1−n2)
,……………. the

maximum intensity sound will be heard.

Case-II

When (ω1-ω2)t = 2π(n1-n2) t = (2k+1)π; where k=0, 1, 2, ……

The resultant amplitude is then

A = a2+ b2− 2ab = (a−b)2 = (a-b)

Thus the resultant amplitude is minimum.

When t =
(2k+1)π
2π(n1−n2)

=
(2k+1)

2(n1−n2)

That is, at the time instant
1

2(n1−n2)
,

3
2(n1−n2)

,……………. the

minimum intensity sound will be heard.

Thus the time interval between successive maxima and

minima is
1

(n1−n2)
sec. One minimum amplitude is produced

between two successive maxima and vice versa.

Hence, the number of beats produced per second =
1

1/(n1−n2)

= (n1-n2)

Thus the number of beats produced per second is equal to
the difference in frequency of the two notes.
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Phase velocity and group velocity
Let us consider the superposition occurs between two waves with
nearly same frequency, follow the equations,

y1= a sin(ω1t - k1x) (9.9)

y2= a sin(ω2t – k2x) (9.10)

The equation of the resultant wave is,

y= y1+ y2= a sin(ω1t - k1x)+ a sin(ω2t – k2x)

Applying the trigonometric relation,

sinA + sinB = 2 sin
1

2
(A+B) cos

1

2
(A-B)

So, y = 2a sin [
(ω1+ω2)

2
t -

(k1+k2)
2

x] cos[
(ω1−ω2)

2
t -

(k1−k2)
2

x]

Let us consider, ω1- ω2= Δω and k1- k2= Δk; where Δω and Δk are
very small.

Also, ω =
1

2
(ω1+ω2) and k =

1

2
(k1+ k2)

y = 2a cos
1

2
(Δω.t –Δk.x) sin (ωt – k.x) (9.11)

Thus, the resultant wave has the same frequency and wavelength

as the original with the amplitude modulated by a factor cos
1

2
(Δω.t

–Δk.x).

The velocity of the resultant wave, v = ω/k is nearly equal to
that of the individual waves and that is called the phase
velocity.

The envelope gives the cosine wave and is called the Beat
wave. It consists of a group of waves, each group consists of a
number of waves. Group velocity is nothing but the velocity at
which the envelope travels.

Figure: Phase velocity and group velocity
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Relation between phase velocity and group velocity

The envelope travels as a wave with the

wave number
1

2
Δk and angular frequency

1

2
Δω.

The velocity at which the envelope travels
can be determined by considering the

modulating factor, cos
1

2
(Δω.t – Δk.x)

=cos (
1

2
Δω.t -

1

2
Δk.x)

= cos
1

2
Δk (x -

Δω
Δk

. t)

= cos
1

2
Δk (x - ut)

Where, u=
Δω
Δk

is called the group velocity.

But, ω= vk and v is the phase velocity.

Hence the relation between group
velocity (u) and phase velocity (v) is
given by,

u =
Δω
Δk

=
Δ(𝑣𝑘)

Δk

Or, u = v + k
Δ𝑣

Δk

Or, u = v + k
Δ𝑣

Δλ

Δλ

Δk

Since k=
2𝜋

𝜆
or, 𝜆=

2𝜋

k

Hence,
Δλ

Δk
= -

2π

𝑘2

Thus, u = v -k
Δ𝑣

Δλ

2π

𝑘2 =v -
2π

𝑘

Δ𝑣

Δλ

∴ u = v -𝜆
Δ𝑣

Δλ
(9.12)
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• A medium in which the phase velocity does not depend upon the

frequency of the wave, then u=𝑣, such medium is called non-dispersive

medium. Examples: Waves on a perfectly flexible string, sound wave in

air, light waves in vacuum, etc.

• If the phase velocity depends on the frequency or wavelength, then u≠𝑣,

the medium is dispersive in nature. Examples: Water waves, light waves

in water, etc.


