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Total energy of a particle executing SHM

• If no non-conservative forces (like friction) act on the 

oscillator the total energy of the particle will be,

E= K+U=constant

• Kinetic energy, K=
1
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• Potential energy, U=-0׬
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• E=
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Average energy of a particle executing SHM

• Average kinetic energy, Kavg =
1
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• Average potential energy, Uavg=
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Spring-mass System

Hooke’s law for extended spring, F=-kΔl

K=spring constant, Δl=extension, l=length of the spring

[Fig (a)]

From Fig (b)Weight, mg =kΔl

The Fig (c), The upward force the spring exerts on the body

is k(Δl+y)

The downward force acting on the body is mg.

So, The resultant force on the body,

F=mg-k(Δl+y)=-ky

Newton’s 2nd law of motion gives, F=m
𝑑2𝑦

𝑑𝑡2

(a) (b) (c)

F=kΔlΔl

m

m

mg

mg

F=k(Δl+y)y

l

Finally, m
𝑑2𝑦

𝑑𝑡2 =-ky

𝑑2𝑦

𝑑𝑡2 +
𝑘

𝑚
y=0; Same as the Diff. equation of SHM.

Time period, T=2π
𝑚

𝑘



Torsional pendulum
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Differential equation:

Hooke’s law for angular motion,

𝜏 = −κ𝜃

κ=torsional spring constant

Newton’s 2nd law for angular motion,

𝜏 = 𝐼𝛼 = 𝐼
𝑑2𝜃

𝑑𝑡2

Equating expressions,

−κ𝜃 = 𝐼
𝑑2𝜃

𝑑𝑡2

𝑑2𝜃

𝑑𝑡2 +
κ

𝐼
𝜃=0 

Solution of the diff. equation

𝜃 = 𝜃𝑚𝑠𝑖𝑛 𝜔𝑡 + 𝜑

𝜃 = angular displacement

𝜃𝑚= angular amplitude

ω = angular frequency =
κ

𝐼

Time period, T = 2π
𝐼

κ
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Simple Harmonic oscillation in LC circuit 

Simple harmonic oscillation in an electrical system 

• The capacitor (C) gets charged upon pressing key S. 

• C discharges through the inductance coil on releasing S. 

• Magnetic flux (ɸ) increases due to the current, I=
𝑑𝑄

𝑑𝑡

• ɸ induces emf (-L
𝑑𝐼

𝑑𝑡
), which opposes the growth of current.

• L opposes both growth and decay of current in the circuit.

• Voltage drop across the capacitor = 
𝑄

𝐶

Since there is no external emf in the circuit (the battery being cut-off), 
the net emf in the circuit is,
𝑄

𝐶
+ L

𝑑𝐼

𝑑𝑡
=0 (From Kirchhoff’s law)

⇒
𝑄

𝐿𝐶
+

𝑑𝐼

𝑑𝑡
=0

⇒
𝑄

𝐿𝐶
+

𝑑2𝑄

𝑑𝑡2 =0

⇒
𝑑2𝑄

𝑑𝑡2 + 𝜔2 𝑄 = 0 (Where, 𝜔2 = 
1

𝐿𝐶
or, 𝜔 = 

1

𝐿𝐶
)

This equation is similar to the differential equation of SHM with y 

replaced by Q, m replaced by L and k replaced by
1

𝐶
. 

ɛ = emf of the source
R =resistance
S= switch
L = inductance
C =capacitance
Q= charge on each plate of C

Hence, the solution can be written as, 

Q= Qo sin(𝜔t+φ)

Qo =𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒

Frequency of variation of charge between +Qo to –Qo is,

n=
1

2π 𝐿𝐶

Time period, T= 2π 𝐿𝐶

I=
𝑑𝑄

𝑑𝑡
= Qo 𝜔cos(𝜔t+φ); 

Since maximum value of cos(𝜔t+𝜑)=1

Maximum current, 𝐼𝑜=𝑄𝑜𝜔

𝐼=𝐼𝑜 cos(𝜔t+𝜑)



Two-Body Oscillations 

• In microscopic world, many objects such as nuclei, atoms,
molecules, etc. execute oscillations that are approximately SHM.

• Example: Diatomic molecule in which 2 atoms are bonded
together with a force. Above absolute zero temperature, the atoms
vibrate continuously about their equilibrium positions.

• We can compare such a molecule with a system where the atoms
can be considered as two particles with different masses
connected by a spring.
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Let the molecules can be represented by two masses m1 and m2 connected

to each other by a spring of force constant k as shown in Fig 4(a).

The motion of the system can be described in terms of the separate

motions of the two particles which are located relative to the origin O by

the two coordinates x1 and x2 in Fig. 4(a).

The relative separation (x1 - x2) gives the length of the spring at any time.

The un-stretched length of the spring is L.

The change in length of the spring is given by,

x = (x1 - x2) – L (4.1)

The magnitude of the force that the spring exerts on each particle is,

F=kx (4.2)

If the spring exerts a force -F on m1, then it exerts a force F on m2.

Taking the force component along the X-axis, let

us apply Newton’s 2nd law of motion separately to

the two particles,

𝑚1
𝑑2𝑥1

𝑑𝑡2 = −𝑘𝑥 (4.3)

𝑚2
𝑑2𝑥2

𝑑𝑡2 = 𝑘𝑥 (4.4)



Multiplying equation (4.3) by m2 and equation (4.4) by m1

𝑚1𝑚2
𝑑2𝑥1

𝑑𝑡2 = −𝑚2𝑘𝑥 (4.5) 

𝑚1𝑚2
𝑑2𝑥2

𝑑𝑡2 = 𝑚1𝑘𝑥 (4.6) 

Subtracting, equation (4.6) from equation (4.5),

𝑚1𝑚2
𝑑2𝑥1

𝑑𝑡2 − 𝑚1𝑚2
𝑑2𝑥2

𝑑𝑡2 = −𝑚2𝑘𝑥 − 𝑚1𝑘𝑥

⇒ 𝑚1 𝑚2
𝑑2

𝑑𝑡2 (𝑥1 − 𝑥2) = −𝑘𝑥(𝑚1 + 𝑚2)

⇒
𝑚1𝑚2

(𝑚1+ 𝑚2)

𝑑2

𝑑𝑡2 (𝑥1 − 𝑥2) = −𝑘𝑥 (4.7)

The quantity
𝑚1𝑚2

(𝑚1+ 𝑚2)
has the dimension of mass. This quantity is 

known as the reduced mass of the system and it is denoted by μ.  
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μ =
𝑚1𝑚2

(𝑚1+ 𝑚2)
(4.8)

Reduced mass of a system is always smaller than either of the 
masses of the system. (μ<m1 and μ<m2)

Since, the un-stretched length of the spring is constant the 
derivative of (x1-x2) are the same as the derivative of x.

𝑑2

𝑑𝑡2 (𝑥1 − 𝑥2) =
𝑑2

𝑑𝑡2 𝑥 + 𝐿 =
𝑑2𝑥

𝑑𝑡2 [from equation (4.1)]

So, from equation (4.7) we get,

μ
𝑑2𝑥

𝑑𝑡2 = −𝑘𝑥

⇒
𝑑2𝑥

𝑑𝑡2 +
𝑘

𝜇
𝑥 = 0 (4.9)

Here, angular frequency is, ω = 
𝑘

𝜇
; So, time period, T=2π

𝜇

𝑘

Equation (4.9) is identical to the differential equation of SHM of a 
single body oscillator.


