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Total energy of a particle executing SHM

If no non-conservative forces (like friction) act on the
oscillator the total energy of the particle will be,

E= K+U=constant
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Average energy of a particle executing SHM

* Average kinetic energy, K

» Average potential energy, U

=1 fOleazcosz(a)t t @) dt = %foT 2cos*(wt + @) dt

ka

= [1 + cos2(wt + @)] d

ka*[ T T
=% [fo dt+ [, cos2(wt +<p)dt]

fOT cos2(wt + @)dt

_ka® 47 . ka?

=T [t]O + T X 0 .
: T

=5 [sin 2(wt + 9)]o

1.2
= ka )
=5 [sin 2(wT + @) - sin2¢]
v Tfo ~ka’sin*(wt + @) dt= —f 2sin?(wt + @) dt
= [sin2 (w2 + ¢) - sin2¢]

ka 2w w
=7 [1 — cos2(wt + ¢)] d
=L [sin 227 + ) - sin2¢]
_kaz [fT dt fT 2 d 2w
=7 |Jo dt— ], cos (wt + @) t] .
=— [sin2¢ - sin2¢]
ka? ka? 2w

—karyr

= 0— —X0
4T AT -0

1
== ka?
4




Spring-mass System

Hooke's law for extended spring, F=-kAl

K=spring constant, 4/=extension, /=length of the spring
[Fig ()]

From Fig (b)Weight, mg=k4/

The Fig (c), The upward force the spring exerts on the body
is k(41+y)

The downward force acting on the body is mg.
So, The resultant force on the body,

F=mg-k(Al+y)=-ky

) : . d>
Newton’s 2" Jaw of motion gives, F=md—g

==y
@ (b) ©
A,l’"' F=kdl L7

" 2 F=k(Al+y)

Finally, mZ—gz -ky

d*y
dt?

Time period, T=21T\/%

+ %yz&, Same as the Diff. equation of SHM.
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Torsional pendulum

Differential equation:

Hooke’s law for angular motion,

T = —k0

k=torsional spring constant

Newton’s 2" Jaw for angular motion,

d?0
r=1a=Iﬁ

Equating expressions,
—xh = | —
« dt?

@0

K
= T 79—0

Solution of the diff. equation
0 =0, sin(wt + @)

:
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+0 max

6 = angular displacement

0.,= angular amplitude
@ = angular frequency :ﬁ

Time period, T = 2n£
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Simple Harmonic oscillation in LC circuit

Simple harmonic oscillation in an electrical system
* The capacitor (C) gets charged upon pressing key S.

e Cdischarges through the inductance coil on releasing S.

: . d
* Magnetic flux (¢) increases due to the current, I=d—f

* ¢ induces emf (-L %), which opposes the growth of current.
* L opposes both growth and decay of current in the circuit.
* Voltage drop across the capacitor = %

Since there is no external emf in the circuit (the battery being cut-off),
the net emf in the circuit is,

% 4L %:0 (From Kirchhoff’s law)
Q ., da_
et @™

Q a’Q _
= LC t dt? =0

d*Q
dt?

1
= —+ w?Q = 0 (Where, w?=— or,w=
LC

1

Vo)

This equation is similar to the differential equation of SHM with y
replaced by Q, m replaced by L and k replaced by% :

€ R
L
L ]
/ a(¢77) =
0,rQ
\
L

€ = emf of the source

R =resistance

S= switch

L = inductance

C =capacitance

Q= charge on each plate of C

Hence, the solution can be written as,

Q= Q,sin(wt+¢)

Q,=amplitude of charge

Frequency of variation of charge between +Q,to -Q, is,

1
n:
2mVLC

Time period, T=2nVLC
I= Z—fz Q,wcos(wt+p);

Since maximum value of cos(wt+¢@)=1

Maximum current, [ =Q ,w

I=1, cos(wt+¢@)




Two-Body Oscillations

* In microscopic world, many objects such as nuclei, atoms,
molecules, etc. execute oscillations that are approximately SHM.

 Example: Diatomic molecule in which 2 atoms are bonded
together with a force. Above absolute zero temperature, the atoms
vibrate continuously about their equilibrium positions.

* We can compare such a molecule with a system where the atoms
can be considered as two particles with different masses
connected by a spring.



Let the molecules can be represented by two masses m; and m, connected

to each other by a spring of force constant k as shown in Fig 4(a).

The motion of the system can be described in terms of the separate
motions of the two particles which are located relative to the origin O by

the two coordinates x; and x, in Fig. 4(a).

The relative separation (X, - x,) gives the length of the spring at any time.

The un-stretched length of the spring is L.

The change in length of the spring is given by,
x=(x;-x,)-L (4.1)

The magnitude of the force that the spring exerts on each particle is,
F=kx (4.2)

If the spring exerts a force -Fon m,, then it exerts a force F on m,.

k
m, mgcﬁﬁﬁﬁﬁﬁﬁﬁ M m,
0 F _F
Fig. 4(a)
j\’ _F
m
Fig. 4(b)

Taking the force component along the X-axis, let
us apply Newton’s 2" law of motion separately to

the two particles,

dZ

my dt’; = —kx (4.3)
d2x2 —

my— 5= kx (4.4)
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Multiplying equation (4.3) by m, and equation (4.4) by m,

d?x,
mym, —=t = —m,kx (4.5)

d?x,
mym, —=* = mykx (4.6)

Subtracting, equation (4.6) from equation (4.5),

d?x, _ d?x, kot — k

mym, dcZ mym, iz MmyKX miKx
dZ
= my My — (X — X) = —kx(my +my)
mma 4 x) = —kx (4.7)

(m1+ mz) dtZ

The quantlty(— has the dimension of mass. This quantity is
mi+

)
known as the reduced mass of the system and it is denoted by L.

m1m2

=12 4.8
" (my+ my) (48)
Reduced mass of a system is always smaller than either of the

masses of the system. (u<m; and pu<m,)

Since, the un-stretched length of the spring is constant the
derivative of (x,-x,) are the same as the derivative of x.

:—; (ry —x) =— 2( + L) = [from equation (4.1)]

So, from equation (4.7) we get,

d%x
— = —kx
dt

FJF_ =0

(4.9)
Here, angular frequency is, ® = \/%; So, time period, T=2T[\/%

Equation (4.9) is identical to the differential equation of SHM of a
single body oscillator.




