Waves and Oscillations

Lecture No. 5

Topics: Forced oscillations and Resonance

Teacher's name: Dr. Mehnaz Sharmin

Forced Oscillation

- The time period of a simple harmonic oscillator depends on the dimensions of the body and its elastic properties.
- The vibration of such body die out with time due to the dissipation of energy. (Damping)
- If some external periodic force is constantly applied on the body, it continues to oscillate under the influence of such external force. Such vibration of the body are called FORCED VIBRATIONS.

Examples of Forced Oscillation

Motion of a swing, musical instruments, stringed instruments, etc.

Ref: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.toppr.com%2Fcontent%2Fstory%2Famp%2Fexamples-of-free-and-forced-oscillations-45608%2F&psig=AOvVaw0QUvG4i3fEtvVZatNjwRnR&ust=1591077297951000&source=images&cd=vfe&ved=0CAlQjRxqFwoTCKjvl4H33-kCFQAAAAAdAAAAABAg

Differential equation of a forced oscillator

If damping is taken into consideration for an oscillator, then oscillator experiences

- (i) Restoring Force : $F_r = -ky$;
- (ii) Damping Force : $F_d = -b \frac{dy}{dt}$;
- (iii)Let an external force is applied to the damped oscillator which given by, $F_e = F_o e^{iqt}$
- (iv)We, therefore, can write the equation of the forced oscillation as, $F=F_d+F_r+F_e$ Combination of Hook's law and Newton's 2nd law of motion gives us, $m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt} + F_o e^{iqt}$

$$m\frac{d^2y}{dt^2} + ky + b\frac{dy}{dt} = F_o e^{iqt}$$

$$\frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = \frac{F_o}{m}e^{iqt}$$

$$\frac{d^2y}{dt^2} + 2p\frac{dy}{dt} + \omega^2 y = fe^{iqt}$$
(6.1)

Equation (6.1) is a 2nd order 1st degree differential equation for forced vibration.

Where, $f = \frac{F_o}{m}$ is the amplitude of driving force per unit mass.

Solution:

Let us consider the trials solution of equation (6.1),

$$y = Ae^{iqt} \tag{6.2}$$

Or,
$$\frac{dy}{dt} = Aiqe^{iqt}$$

Or,
$$\frac{d^2y}{dt^2} = -q^2 A e^{iqt}$$

Using these values in equation (6.1),

$$-q^2Ae^{iqt} + 2pAiqe^{iqt} + \omega^2Ae^{iqt} = fe^{iqt}$$

Or,
$$A/-q^2 + 2ipq + \omega^2 = f$$

Or,
$$A = \frac{f}{(\omega^2 - q^2) + i2pq}$$
 (6.3)

Let, $(\omega^2 - q^2) = B \cos \varphi$ and $2pq = B \sin \varphi$

$$B^{2} = B^{2} \cos^{2} \varphi + B^{2} \sin^{2} \varphi$$
$$= 4p^{2}q^{2} + (\omega^{2} - q^{2})^{2}$$

So,
$$B = \sqrt{4p^2q^2 + (\omega^2 - q^2)^2}$$

$$tan\varphi = \frac{B \sin\varphi}{B \cos\varphi} = \frac{2pq}{(\omega^2 - q^2)}$$

Substituting these values in the equation (6.3),

$$A = \frac{f}{B(\cos\varphi + i\sin\varphi)} = \frac{f}{Be^{i\varphi}}$$

So,
$$A = \frac{fe^{-i\varphi}}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}}$$

Substituting A in equation (6.2),

$$y = \frac{f}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}} e^{i(qt - \varphi)}$$
 (6.4)

Equation(6.4) represents a SHM with the angular frequency q (same as the external or driving force). The forced SHM will be lagging behind the force by a phase φ .

Now, equation (6.1) is an inhomogeneous differential equation. Hence, $y=Ae^{iqt}$ is not really a complete solution.

The solution will be complete if a complementary function is added which is a solution of the related homogeneous equation,

$$\frac{d^2y}{dt^2} + 2p\frac{dy}{dt} + \omega^2 y = 0$$

Here, applying the boundary condition another solution can be obtained when $F_o=0$.

This corresponds to the oscillatory motion in presence of damping for which the solution is,

$$y = ae^{-pt} cos \left[\sqrt{(\omega^2 - p^2)}t - \gamma \right]$$

Here, a and γ are the constants depending on the initial condition.

So, the general solution of the equation (6.1) is,

$$y = ae^{-pt}\cos\left[\sqrt{(\omega^2 - p^2)}t - \gamma\right] + \frac{f}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}}e^{i(qt - \varphi)}$$
(6.5)

The 1st part of the solution represent the initial damped oscillation with the angular frequency $\sqrt{(\omega^2 - p^2)}$ and the amplitude decaying exponentially to zero. The 2nd part of the solution represents the forced vibration with the angular frequency q and the constant amplitude A.

Resonance

- When the forced frequency is equal to the natural frequency of oscillator the oscillation will have maximum amplitude and the state of oscillation of a system is called **RESONANCE.** The amplitude of a forced oscillator is $A = \frac{f}{\sqrt{4p^2q^2 + (\omega^2 q^2)^2}}$
- "A" will be maximum when the denominator is the minimum. That means when,

$$\frac{d}{dq} [4p^2q^2 + (\omega^2 - q^2)^2] = 0$$
Or, $8p^2q + 2(\omega^2 - q^2)(-2q) = 0$
Or, $-4q [(\omega^2 - q^2) - 2p^2] = 0$
Or, $(\omega^2 - q^2) - 2p^2 = 0$ [since $q \neq 0$]
Or, $q^2 = \omega^2 - 2p^2$

$$\therefore q = \sqrt{\omega^2 - 2p^2} \qquad = \sqrt{\omega^2 - \frac{b^2}{2m^2}} \quad [\text{since, } \omega^2 > 2p^2 \text{ and } 2p = b/m]$$

The resonance frequency, $f_R = \frac{\sqrt{\omega^2 - 2p^2}}{2\pi}$, for which A is the maximum.

Sharpness of resonance:

Sharpness of resonance is referred to the fall in amplitude with the change in frequency on each side of the maximum amplitude.

The amplitude of a forced oscillator is $A = \frac{f}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}}$

- (i) For small damping, damping constant p is low and $q=\omega$, $A_{max}=\frac{f}{2pq}$. The resonance curve is sharper.
- (ii) For large damping *p* is high and resonance curve is flat.
- (iii) In absence of any damping force p=0, amplitude of resonance is infinite.

Response:

The particular solution for displacement in the case of forced oscillation is,

$$y = \frac{f}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}} e^{i(qt - \varphi)}$$

Differentiating equation of y with respect to time we get,

$$\frac{dy}{dt} = \frac{fq}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}} e^{i(qt - \varphi)}$$

The velocity is maximum when $e^{i(qt-\phi)}$ is the maximum, that is the oscillator crosses the equilibrium position. So,

$$\left(\frac{dy}{dt}\right)_{max} = \frac{fq}{\sqrt{4p^2q^2 + (\omega^2 - q^2)^2}}$$

Kinetic energy of the oscillator at the instant of crossing the equilibrium position is given by,

$$K = \frac{1}{2}m\left(\frac{dy}{dt}\right)_{max}^{2} = \frac{\frac{1}{2}mf^{2}q^{2}}{4p^{2}q^{2} + (\omega^{2} - q^{2})^{2}}$$

The mean square of the driving force per unit mass = $\frac{0+f^2}{2} = \frac{f^2}{2}$

Response,
$$R = \frac{K}{\frac{f^2}{2}} = \frac{\frac{1}{2}mf^2q^2}{\left[4p^2q^2 + (\omega^2 - q^2)^2\right]\left[\frac{f^2}{2m}\right]} = \frac{mq^2}{\left[4p^2q^2 + (\omega^2 - q^2)^2\right]}$$

$$R = \frac{mq^2}{\left[4p^2q^2 + (\omega^2 - q^2)^2\right]}$$

R will be maximum when, $q = \omega$; $R = \frac{mq^2}{4p^2q^2} = \frac{m}{4p^2}$

Since,
$$2p = b/m$$
, $R = \frac{m^3}{b^2}$

 $R \propto \frac{1}{b^2}$; Response is inversely proportional to square of damping co-efficient of the medium. In absence of damping R is maximum.

i.
$$\frac{q}{\omega} = 1$$
, R is maximum

ii. When b=0, R is infinite,

Sharpness of resonance is maximum.

iii. Sharpness of resonance

decreases with increase of b.

iv. Sharpness of resonance dies

very rapidly even for a very

small change in the value of $\frac{q}{\omega}$ from 1, where b is minimum.

Phase of resonance:

Considering the phase of the forced SHM,

$$tan\varphi = \frac{2pq}{(\omega^2 - q^2)}$$

At resonance $\omega^2 = q^2$ and $tan\varphi = \infty$ That is, $\varphi = \pi/2$

Thus for
$$\frac{q}{\omega} = 1$$
, $\varphi = \frac{\pi}{2}$

For
$$\frac{q}{\omega} > 1$$
, $\varphi > \frac{\pi}{2}$

For
$$\frac{q}{\omega} < 1$$
, $\varphi < \frac{\pi}{2}$

The shape of the curve will also depend on the value of b that is the external

frictional forces.

- ii. For b very small, Curve 1
- iii. For b very large, Curve 2

