

# X-Ray Diffraction and Bragg's Law

Dr. Mehnaz Sharmin Department of Physics Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh

#### Structural Analysis of Solid

- Structure of solids is difficult to analyze by direct measurements.
- Electron microscope with a high resolution can't still show clear image in atomic level.
- It is convenient to analyze crystal structure by observing the optical phenomena such as reflection, scattering, diffraction, etc. by the help of either high energy particles or photons.

#### TEM image of ZnO nanoparticles



Lee WH et al., "Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds", <u>Nanoscale Res Lett (2011)</u>

#### **Crystal Structure Studies**

- X-rays; photon energy ~ 50 keV, very short wavelength and high penetration power.
- 2. Neutrons, energy ~ 0.08 eV, usually preferable for magnetic crystals, because in the case of non-magnetic materials it interacts only with the nuclei of the constituent atoms
- Electrons, energy ~ 100 eV, penetrates relatively short distance in the crystal

## Properties of X-rays

- X-rays travel in straight lines.
- They cannot be deflected by electric or magnetic field.
- They have high penetration power due to short wavelength ranging from 0.1 to 100 Å.
- They exhibit almost all optical phenomena like reflection, refraction, diffraction, etc.
- They show effect in photographic plates (films).
- Fluorescent materials glow when X-rays are directed at them.
- Ionization of gas results when X-ray beam is passed through it.

#### Advantages of X-ray Diffraction Technique

- It is very cost effective and convenient.
- It is very user friendly.
- In this technique no vacuum is required.
- X-rays are not much absorbed in air.

#### Disadvantages of X-ray Diffraction Technique

 X-rays do not interact very strongly with lighter elements.

### X-ray diffraction and Bragg's law

- OA and O'E: Incident rays
- AP and EP': Reflected from the 1<sup>st</sup> surface
- CP": Reflected from the 2<sup>nd</sup> surface
- θ: Angle at which OA and O'E are incident on the 1<sup>st</sup> surface
- EC=d= interplanar spacing
- O'EP' and OAP are the same.
- OCP" is longer than the path O'EP' by an amount,  $\Delta$ = BCD = BC + CD
- Now, from the right angle triangles EBC and EDC, we have BC=dsin $\theta$ =CD; So,  $\Delta$  = 2d sin $\theta$
- If two consecutive planes scattered in phase

i.e.  $\Delta = n\lambda$ 

where  $\lambda$ = wavelength of X-rays and n = 0, 1, 2 ... = order

of reflection



#### **Experimental X-ray diffraction Methods**

To satisfy Bragg's law, it is necessary to vary either the angle of inclination of the specimen to the beam or the wavelength of the radiation. The three standard methods of X-ray crystallography are-

- a) Laue Method: A stationary single crystal is irradiated by a range of X-ray wavelengths.
- b) Rotating crystal Method: A single crystal specimen is rotated in a beam of monochromatic X-rays.
- c) Powder Method: A polycrystalline powder specimen is kept stationary in a beam of monochromatic radiation.

Of these techniques, Laue method is used only for known crystal orientation measurement.

## Laue Method



- Uses Single crystal
- Uses White Radiation
- Used for determining crystal orientation and quality

## **Rotating Crystal Method**



## **Powder Method**



#### **XRD Pattern of NaCl Powder**



