

PART A: General Information Description of Course PHY 127

- 1 Course Title : Physical Optics, Waves & Oscillations and Modern Physics
- 2 Type of Course : Non-departmental course
- **3 Offered to** : Department of Chemical Engineering
- 4 Pre-requisite Course(s) : N/A

PART B: Course Details

1. Course Content (As approved by the Academic Council)

Physical Optics: Theories of light; Interference of light, Young's double slit experiment, Displacement of fringes and its uses, Fresnel Bi-prism, Interference at wedge shaped films, Newton's rings, Interferometers; Diffraction of light; Fresnel and Fraunhofer diffraction, Diffraction by single slit, Diffraction from a circular aperture, Resolving power of optical instruments, Diffraction at double slit and N-slits-diffraction grating; Polarization; Production and analysis of polarized light, Brewster's Law, Malus Law, Polarization by double refraction, Retardation plates, Nicol prism, Optical activity, Polarimeters, Polaroid.

Waves & Oscillations: Differential equation of a Simple Harmonic Oscillator, total energy and average energy, Combination of simple harmonic oscillations, Lissajous figures, spring- mass system, Calculation of time period of torsional pendulum, Damped oscillation, Determination of damping co-efficient. Forced oscillation, Resonance, Two-body oscillations, Reduced mass, Differential equation of a progressive wave, Power and intensity of wave motion, Stationary wave, Group velocity and phase velocity, Architectural acoustics, Reverberation and Sabine's formula.

Modern Physics: Michelson-Morley's experiment, Galilean transformation, Special theory of relativity and its consequences; Quantum theory of radiation; Photoelectric effect, Compton effect, Wave particle duality, Interpretation of Bohr's postulates, Radioactive disintegration, Properties of nucleus, Nuclear reactions, Fission, Fusion, Chain reaction, Nuclear reactor.

2. Course Objectives

Objective 1: To develop logical and critical thinking with scientific knowledge of physical optics, waves & oscillation, and modern physics required for the students of chemical engineering. Objective 2: To understand the different laws of Physics associated with physical optics, waves & oscillation, and modern physics, and apply them to solve the real life problems.

3. Knowledge required

Insert previous knowledge requirements: N/A

CO No.	CO Statement	Corresponding PO(s)*	Domains and	Delivery Method(s) and	Assessment Tool(s)
	At the end of the course, a student should be able to		Taxonomy level(s)**	Activity(-ies)	
CO1	Describe the basic laws of Physics related to physical optics, waves & oscillation, and modern physics to express different phenomena in the physical world.	PO(a)	C1	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment
CO2	Explain the fundamental concepts and theories of physical optics, waves & oscillation, and modern physics applicable for different physical conditions.	PO(a)	C2	e.g., Lectures, Homework	e.g., Written exams; viva voce; presentation; assignment

4. Course Outcomes

Level 1/ Term 1

Credit (Contact) Hours: 3.0

CO3	Apply the relevant laws of physics to	PO(a)	C3, C4	e.g., Lectures,	e.g., Written exams;
	solve various mathematical problems			Homework	viva voce;
	and interpret the result and its				presentation;
	consequences.				assignment

*POs

PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): Engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning **Domains

: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation **C-Cognitive**

A-Affective : A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing
 P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

5. Lecture Plan

wk	Lecture Topics	Corresponding CO(s)
1	 Theories of light, Interference of light, Young's double slit experiment Introductory discussion of this course; Definition of wave motion and Simple harmonic motion (SHM), differential equation of SHM. Frame of reference, failure of Newtonian mechanics, Galilean transformation, concept of ether 	CO1, CO2, CO3
2	 Displacements of fringes and its uses, Fresnel bi-prism Solution of differential equation of SHM, velocity and acceleration of SHM, Significance of angular frequency, and solving mathematical problems. Michelson-Morley experiment, consequence of Michelson-Morley experiment 	CO1, CO2, CO3
3	 Interference at parallel and wedge-shaped films Total energy and average energy of SHM, and solving mathematical problems related to energy of SHM Derivation of Lorentz transformation equations, relativity of length, time and mass 	CO1, CO2, CO3
4	 Newton's rings, interferometers Examples of SHM: spring-mass system, effect of spring mass in the oscillation (effective mass), torsional pendulum, and solving mathematical problems Mass-Energy relation, Relativistic addition of velocities, Relativity of simultaneity 	CO1, CO2, CO3
5	 Solving mathematical problems related to interference of light Combination of simple harmonic motions (in a same line and right angles), Lissajous figures Class Test (Modern Physics) 	CO1, CO2, CO3
6	 Class Test (Physical Optics) Damped harmonic oscillation (over-, under- and critical-damping conditions), quality factor, and logarithmic decrement Theory of light, Planck's quantum theory, Photo-electric effect, Characteristics (laws) of photoelectric emission 	CO1, CO2, CO3
7	 Diffraction of light, Fresnel and Fraunhofer diffraction, diffraction due to single slit Forced oscillation, resonance, two-body oscillations and reduced mass Failure of wave theory of light to explain photoelectric effect, Einstein photoelectric equation, determination of Planck's constant, light-matter interaction, applications of photoelectric effect 	CO1, CO2, CO3
8	Diffraction from a circular aperture, diffraction at double slits	CO1, CO2, CO3

Department of Chemical Engineering Bangladesh University of Engineering and Technology

COURSE OUTLINE

Course No: PHY 127 Level 1/ Term 1 Credit (Contact) Hours: 3.0

	 Solving mathematical problems related to damped, forced and two-body oscillations Compton effect, Compton theory, wave particle duality/de-Broglie hypothesis, determination of de-Broglie wavelength 	
9	 N-slits-diffraction grating Class Test (Waves & Oscillations) Limitation of Rutherford's atom model, postulates of the Bohr atomic model, limitation of Bohr's atom model, de-Broglie atom model 	CO1, CO2, CO3
10	 Resolving power of optical instruments Various types of waves, progressive wave equation and differential equation of a progressive wave, and solving mathematical problems. Properties of nucleus: static nuclear properties and dynamic properties, mass defect, binding energy, binding energy per nucleon, nuclear force 	CO1, CO2, CO3
11	 Solving mathematical problems related to diffraction of light Energy, power and intensity of wave motion, stationary wave, analytical treatment of stationary wave, and solving mathematical problems. Nuclear chain reactions, different condition for nuclear chain reactions, nuclear fission, nuclear fusion, little boy: a gun-type bomb, fat man: implosion-type bomb 	CO1, CO2, CO3
12	 Polarization of light, production and analysis of polarized light, Brewster's Law, Malus law Energy of stationary wave, group velocity, phase velocity and relation between group velocity and phase velocity. Nuclear power reactor, different parts of nuclear fission reactor, types of fission reactor, nuclear fusion reactor, types of fusion reactor 	CO1, CO2, CO3
13	 Polarization by double refraction, retardation plates, Nicol prism, optical activity Architectural acoustics, reverberation and Sabine's reverberation formula for growth of intensities Difficulties against using nuclear fusion, nuclear models, the liquid drop model, semi-empirical mass formula 	CO1, CO2, CO3
14	 Polarimeters, polaroid, solving mathematical problems related to polarization of light Sabine's reverberation formula for decay of intensities, equation for reverberation time and solving mathematical problems related to reverberation. The shell model, radioactivity, radioactive transformation, decay law, average life period of a radioelement 	CO1, CO2, CO3

6. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

7. Distribution of Marks

Class Participation	10%
Continuous Assessment	20%
Final Examination	70%
Total	100%

8. Textbook/ Reference

- 1. Physics Part-I; D. Halliday, and R. Resnick
- 2. Physics Part-II ; D. Halliday, and R. Resnick
- 3. Fundamentals of Optics (4th Edition); F. A. Jenkins, and H. E. White
- 4. Vibrations & Waves; A. P. French
- 5. Concepts of Modern Physics (6th edition); Arthur Beiser
- 6. Waves & Oscillations; N. Subrahmanyum and Brij Lal
- 7. Physics for Engineers Part-1; Giasuddin Ahmad
- 8. Physics for Engineers -Part-2; Giasuddin Ahmad

Prepared by:				
Name: Course Teacher	Name: Course Teacher	Name: Course Teacher		
Signature:	Signature:	Signature:		
Date of Preparation: 29 May, 2022				
Date of Approval by BUGS: 01 June, 2022				