

# PART A: General Information Description of Course PHY 129

| 1 | Course Title | : Structure of Matter, | Electricity & | Magnetism, | Wave Mechanics |
|---|--------------|------------------------|---------------|------------|----------------|
|---|--------------|------------------------|---------------|------------|----------------|

- 2 Type of Course : Non-departmental course
- 3 Offered to : Department of Computer Science and Engineering
- 4 Pre-requisite Course(s) : N/A

## **PART B: Course Details**

1. Course Content (As approved by the Academic Council)

**Structure of Matter:** Crystalline and amorphous solids, crystal systems, crystal directions, Miller indices, co-ordinations number, packing factor, Bragg's law of X-ray diffraction, crystal structure analysis, defects in crystal, bonds in solids, cohesive energy and bonding energy, free electron theory of metals, band theory of solids, solid state devices.

**Electricity & Magnetism:** Electrostatics: electric field, Gauss's law and its applications for various charge distributions, electric potential and equipotential surface, dielectrics and electrostatic energy in capacitors; Magnetostatics: magnetic field and forces, Hall effect, application of Biot-Savart and Ampere's laws, electromagnetic induction and inductance, energy in a magnetic field, Electromagnetic oscillations: RC, LR, LC and LRC circuits, working principle of transformers, motors and generators, magnetic materials and its applications in a computing device.

**Wave Mechanics**: Failure of classical mechanics and historical origins of the quantum mechanics, wave particle duality, uncertainty principle, postulates of quantum mechanics, wave function, operators, Schrödinger equation, expectation value, Ehrenfest theorem, eigen function and eigen values, particle in a box, square well potential, linear harmonic oscillator.

### 2. Course Objectives

- Objective 1: To develop logical and critical thinking with scientific knowledge of structure of matter, electricity & magnetism, and wave mechanics required for the students of computer science and engineering.
- Objective 2: To understand the different laws of Physics associated with structure of matter, electricity & magnetism, and wave mechanics, and apply them to solve the real life problems.

#### 3. Knowledge required

Insert previous knowledge requirements: N/A

#### 4. Course Outcomes

| CO  | CO Statement                          | Corresponding | Domains    | Delivery        | Assessment Tool(s)   |
|-----|---------------------------------------|---------------|------------|-----------------|----------------------|
| No. |                                       | PO(s)*        | and        | Method(s) and   |                      |
|     | At the end of the course, a student   |               | Taxonomy   | Activity(-ies)  |                      |
|     | should be able to                     |               | level(s)** |                 |                      |
| CO1 | Describe the basic laws of Physics    | PO(a)         | C1         | e.g., Lectures, | e.g., Written exams; |
|     | related to structure of matter,       |               |            | Homework        | viva voce;           |
|     | electricity & magnetism, and wave     |               |            |                 | presentation;        |
|     | Mechanics to express different        |               |            |                 | assignment           |
|     | phenomena in the physical world.      |               |            |                 |                      |
| CO2 | Explain the fundamental concepts and  | PO(a)         | C2         | e.g., Lectures, | e.g., Written exams; |
|     | theories of structure of matter,      |               |            | Homework        | viva voce;           |
|     | electricity & magnetism, and wave     |               |            |                 | presentation;        |
|     | Mechanics applicable for different    |               |            |                 | assignment           |
|     | physical conditions.                  |               |            |                 |                      |
| CO3 | Apply the relevant laws of physics to | PO(a)         | C3, C4     | e.g., Lectures, | e.g., Written exams; |
|     | solve various mathematical problems   |               |            | Homework        | viva voce;           |
|     | and interpret the result and its      |               |            |                 | presentation;        |



| consequences. |  | assignment |
|---------------|--|------------|
|               |  |            |

\*POs

PO (a): Engineering knowledge; PO(b): Problem analysis; PO (c): Design/development of solutions; PO(d): Investigation; PO(e) Modern tool use; PO(f): Engineer and society; PO(g): Environment and sustainability; PO(h): Ethics; PO(i): Individual work and teamwork; PO(j): Communication; PO(k): Project management and finance; PO(l): life-long learning

\*\*Domains

C-Cognitive : C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

**A-Affective** : A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7: Organization

#### 5. Lecture Plan

| wk | Lecture Topics                                                                                                                                                                                                                        | Corresponding CO(s) |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1  | <ul> <li>Crystalline and amorphous solids, crystal systems</li> <li>Coulombs law, Electric field</li> <li>Failure of Newtonian mechanics, Galilean transformation, concept of ether</li> </ul>                                        | CO1, CO2, CO3       |
| 2  | <ul> <li>Different types of crystals</li> <li>Electric flux, Gauss's law and its applications for various charge distributions</li> <li>Michelson-Morley experiment, consequence of Michelson-Morley experiment</li> </ul>            | CO1, CO2, CO3       |
| 3  | <ul> <li>Crystal directions, Miller indices, co-ordinations number, packing factor</li> <li>Electric potential and equipotential surface,</li> <li>Postulates of quantum mechanics, wave function</li> </ul>                          | CO1, CO2, CO3       |
| 4  | <ul> <li>Solving mathematical problems related to the crystal system</li> <li>Dielectrics and electrostatic energy in capacitors</li> <li>Schrodinger equation</li> </ul>                                                             | CO1, CO2, CO3       |
| 5  | <ul> <li>Bragg's law of X-ray diffraction</li> <li>Solving mathematical problems related to electric field, potential and capacitance</li> <li>Mathematical problems related to expectation value</li> </ul>                          | CO1, CO2, CO3       |
| 6  | <ul> <li>Class Test (Structure of Matter)</li> <li>Magnetic field and forces, Hall effect</li> <li>Quantum mechanical operators and expectation value</li> </ul>                                                                      | CO1, CO2, CO3       |
| 7  | <ul> <li>Crystal structure analysis</li> <li>Application of Biot-Savart and Ampere's laws</li> <li>Ehrenfast theorem and its consequences</li> </ul>                                                                                  | CO1, CO2, CO3       |
| 8  | <ul> <li>Defects in crystal</li> <li>Solving mathematical problems related to magnetic force and magnetic field</li> <li>Class Test (Wave mechanics)</li> </ul>                                                                       | CO1, CO2, CO3       |
| 9  | <ul> <li>Solving mathematical problems related to X-ray diffraction and Crystal defects.</li> <li>Class Test ( Electricity &amp; Magnetism)</li> <li>Eigen value, Eigen function and time-independent Schrodinger equation</li> </ul> | CO1, CO2, CO3       |
| 10 | <ul> <li>Bonds in solids, cohesive energy and bonding energy</li> <li>electromagnetic induction and inductance, energy in a magnetic field,</li> <li>Stationary states and their properties</li> </ul>                                | CO1, CO2, CO3       |
| 11 | <ul> <li>Free electron theory of metals</li> <li>Electromagnetic oscillations: RC, LR, LC and LRC circuits</li> </ul>                                                                                                                 | CO1, CO2, CO3       |



|    | Infinite square well potential                                                                                                                                                                       |               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 12 | <ul> <li>Band theory of solids,</li> <li>Working principle of transformers, motors, and generators</li> <li>Free particle</li> <li>Class Test-4</li> </ul>                                           | CO1, CO2, CO3 |
| 13 | <ul> <li>Solid state devices.</li> <li>Solving mathematical problems related to the magnetic induction.</li> <li>Particle in a box</li> </ul>                                                        | CO1, CO2, CO3 |
| 14 | <ul> <li>Solving mathematical problems related to different theories of solid</li> <li>Magnetic materials and its applications in a computing device.</li> <li>Linear harmonic oscillator</li> </ul> | CO1, CO2, CO3 |

#### 6. Assessment Strategy

- Class Participation: Class participation and attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment any of the activities such as quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Final Examination: A comprehensive term final examination will be held at the end of the Term following the guideline of academic Council.

#### 7. Distribution of Marks

| Class Participation   | 10%  |
|-----------------------|------|
| Continuous Assessment | 20%  |
| Final Examination     | 70%  |
| Total                 | 100% |

#### 8. Textbook/ Reference

- 1. Introduction to Solid State Physics; C. Kittel
- 2. Solid State Physics; M. A. Wahab
- 3. Fundamentals of Physics; D. Halliday, R. Resnick, and J. Walker
- 4. Quantum Physics; R. Eisberg, R. Resnick
- 5. Introduction to Quantum Mechanics, 2<sup>nd</sup> Ed., David. J. Griffiths
- 6. Physics for Engineers Part-2; Giasuddin Ahmad

| Prepared by:                               |                      |                      |  |  |
|--------------------------------------------|----------------------|----------------------|--|--|
| Name: Course Teacher                       | Name: Course Teacher | Name: Course Teacher |  |  |
| Signature:                                 | Signature:           | Signature:           |  |  |
|                                            |                      |                      |  |  |
|                                            |                      |                      |  |  |
| Date of Preparation: 01 November 2022      |                      |                      |  |  |
|                                            |                      |                      |  |  |
| Date of Approval by BUGS: 02 November 2022 |                      |                      |  |  |
|                                            |                      |                      |  |  |