## $\mathbf{W}_{1}$ : Determination of line frequency by Lissajous figures using an oscilloscope and a function generator and verification of the 'calibration' of the TIME/DIV Knob at a particular position for different frequencies.

## Theory:

A. Consider two simple harmonic motions of the same frequency ( $\omega$ ) but of different amplitudes, a and b, acting on a particle mutually perpendicular to one another (i. e., one vibrates along the X -axis, the other vibrates along the Y -axis). Also, consider the phase difference of these two waves is $90^{\circ}$. Then,

$$
\begin{equation*}
x=a \sin \omega t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y=b \cos w t \tag{2}
\end{equation*}
$$

From equations (1) and (2)

$$
\begin{align*}
& \frac{x}{a}=\sin w t  \tag{3}\\
& \frac{y}{b}=\cos w t \tag{4}
\end{align*}
$$

From equations (3) and (4)

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{5}
\end{equation*}
$$

This is the equation of an ellipse.
If $\mathrm{a}=\mathrm{b}$, i.e., the amplitudes of the two vibrations are equal, then equation (5) reduces to

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{6}
\end{equation*}
$$

Which is the equation of a circle of radius a.


Fig-1: An ellipse


Fig-2: A circle

From equation (5) and (6), we obtain one loop such as an ellipse or a circle, which touches X and Y -axes at one point (Fig-1 and Fig-2).

If we consider frequencies of two waves along $X$ and $Y$-axes as $f_{x}$ and $f_{y}$, then the frequency ratio is:

$$
\begin{equation*}
\frac{f_{x}}{f_{y}}=\frac{\omega}{\omega}=1 \tag{7}
\end{equation*}
$$

If the frequencies $f_{x} \& f_{y}$ are respectively $2 \omega$ and $\omega$ then the combination of equation (1) and (2) will lead to:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{4 y^{2}}{b^{2}}\left(\frac{y^{2}}{b^{2}}-1\right)=0 \tag{8}
\end{equation*}
$$

The above equation represents a two-loop pattern (Fig-3), which touches on Y-axis and onepoint on X -axis at one point and Y -axis more than one point.

In these cases, the frequency ratio:

$$
\begin{equation*}
\frac{f_{x}}{f_{y}}=\frac{2 \omega}{\omega}=2 \tag{9}
\end{equation*}
$$

If we increase the frequency ratio successively, then we can, in general, write:

$$
\begin{equation*}
\frac{f_{x}}{f_{y}}=n \tag{10}
\end{equation*}
$$


where $\mathrm{n}=1,2,3$, etc. ( $\mathrm{n}=$ number of loops touches on Y -axis)

Fig-3
B. Time base $\mathrm{T}_{\mathrm{B}}$ of an oscilloscope is the time taken for the cathode ray to sweep unit division of the screen.

$$
\begin{align*}
& T_{B}=\frac{\text { Time taken to show a complete cycle }}{\text { No. of division on the screen showing complete cycle }} \\
& T_{B}=\frac{\text { time period }}{d}=\frac{1}{\text { frequency } \times d}=\frac{1}{f d} \tag{11}
\end{align*}
$$

If the time/div knob is kept at a particular position then for different frequencies from the function generator, we can measure the number of divisions $d$ between two consecutive peaks, i.e. for a full sine wave displayed on the screen. If we plot frequency versus $1 / d$, a straight line will be obtained. The value of the slope will give $\mathrm{T}_{\mathrm{B}}$ at the particular position of the time/div knob.

## Procedure-A

1. Connect the output of the signal generator to $\mathrm{CH}-1$ of the oscilloscope (By a cable having two crocodile clips at the end).
2. Connect the output of the transformers to CH-2 of the oscilloscope (by a similar cable).
3. Switch $\mathbf{O N}$ the power of the oscilloscope, signal generator and transformer.
4. Press sine wave ( $\sim$ ) button of the signal generator. Set the frequency 50 Hz from the signal generator (you will see two sine waves on the display of the oscilloscope).

Additional instructions: If the sine wave does not appear after step 4, follow the procedure mentioned below:
i. Disconnect the output of the transformer from oscilloscope.
ii. Press Main button of the oscilloscope.
iii. Press Autoset button of the oscilloscope.
iv. Adjust the TIM/DIV knob and VOLTS/DIV knob on the oscilloscope at a suitable position so that you can measure the peak-to-peak distance of the sine wave displayed on the oscilloscope screen.
5. Superimpose two waves by shifting vertical adjusting knobs of the oscilloscope (at the middle position)
6. Press XY-button of the oscilloscope (don't touch on the screen. See the "button" just right to the ...of the display).
7. Note the reading of the frequency $\left(f_{x}\right)$ from the function generator and $n$ from the oscilloscope and then calculate the line frequency $\left(f_{y}\right)$ from equation (10).
8. Repeat procedure (7) for at least six different frequencies of the function generator so that you will see an increasing of loops (say $1,2,3$, etc.) on the display with increasing frequency. 9. Draw a graph with frequency $\left(f_{x}\right)$ along the X -axis and the number of loops $(n)$ along the Y axis. The resulting graph should be a straight line passing through the origin.
10. The inverse of the slope from this graph will give you the average line frequency.

## Procedure-B

1. Disconnect the output of the transformer from oscilloscope.
2. Press Main button of the oscilloscope.
3. Press Autoset button of the oscilloscope.
4. Adjust the TIM/DIV knob and VOLTS/DIV knob on the oscilloscope at a suitable position so that you can measure the peak-to-peak distance of the sine wave displayed on the oscilloscope screen.
5. Set a minimum frequency in the function generator for which you can see a sine wave with two peaks on the display. Now measure the scale divisions between the two consecutive peaks "d".
6. Repeat the operation-5 for different frequencies (at least 5 different frequencies).
7. Draw a graph with frequency along the X -axis and $1 / \mathrm{d}$ along Y -axis. The slope of the graph will give you the time base value.

Remarks: Signal Generator takes time to give a stable reading. Keep waiting until it gives a stable value.

Table-1: Data for the line: frequency

| No. of <br> obs. | Frequency in function <br> generator $\mathrm{f}_{\mathrm{x}}(\mathrm{Hz})$ | No. of loops touches in <br> Y axis (n) | Line frequency $\mathrm{f}_{\mathrm{y}}(\mathrm{Hz})$ | Average line <br> frequency (Hz) <br> (from graph) |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |



Table-2: Data for verification of the calibration of TIME/DIV knob

| No. of <br> obs. | Frequency in function <br> generator $\mathrm{f}_{\mathrm{x}}(\mathrm{Hz})$ | Peak to peak distanced <br> (div/volt) | $\frac{1}{d}$ | $\mathrm{T}_{\mathrm{B}}=\frac{1}{f d}$ in ms <br> (from graph) |
| :--- | :--- | :--- | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |



