Education & Training

  • Ph.D. 2014

    Optoelectronics and Nanostructure Science

    GSST, Shizuoka University, Japan

  • M.Phil. 2011

    Physics

    Bangladesh University of Engineering & Technolog, Bangladesh

  • M.S. 2002

    Physics

    University of Dhaka, Bangladesh

  • B.Sc. Honours 2001

    Physics

    University of Dhaka, Bangladesh

Honors, Awards and Grants

  • 2011-2014
    MEXT (Monobukagakusho) Scholarship
    image

    Got Ph.D. from Shizuoka University, Japan in 2014 getting the MEXT (Monobukagakusho) scholarship from Japanese Government for the period  October 2011 to September 2014.   

Filter by type:

Sort by year:

Effects of Micro-Size Graphite-Flake to Reinforce the Performances of Poly (Lactic Acid) Thermoplastic Biocomposites.

S. Alam, M. F. Mina, M. J. Rahman, M. A. Gafur, K. H. Maria, T. Mieno, A. K. M. M. Alam, M. D. H. Beg; 

Abstract

Biocomposites of poly(lactic acid) (PLA) and micrometre-sized graphite (GP) flake powder with 0–30 wt% GP contents have been prepared using extrusion moulding followed by compression moulding. The pure PLA and PLA-GP composites (PGC) have been examined by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy (RS), X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical and micromechanical testing, differential thermal analysis (DTA) and thermogravimetric analysis (TGA). FTIR spectra confirm the physical bond formation between GP and PLA. RS distinguishes the D-band spectra of pure PLA and PGC. XRD shows a partially crystalline structure in the PLA. SEM and TEM exhibit a clear dispersion of GP particles in PLA matrix at lower loading and aggregates at higher loading. With an increase of filler content, the tensile and flexural strengths decrease, but the Young’s and tangent moduli are observed to increase by 58% and 77%, respectively. These increments represent an increase in the stiffness of the materials and are found to be consistent with the theoretical values. A decrease in microhardness with increase in filler content is also observed. Both the DTA and TGA reveal an increased thermal stability of the composites.

Enhanced Dielectric Properties of BaTiO3 Ceramics with Cerium Doping, Manganese Doping and Ce-Mn Co-doping

M. Mostafa, M. J. Rahman, Shamima Choudhury;

Abstract

Ba1−xCexTi1−yMnyO3 (where x and y varies from 0.00 to 0.03) ceramic samples are synthesized by conventional solid state reaction technique. The samples are sintered at 1473 K for 4 h. The grain size is observed to increase with increasing dopant and co-dopant concentration. The X-ray diffraction confirmed the cubic phase of these BaTiO3 -based ceramics with a small amount of secondary phase. The current density shows a nearly linear relationship with voltage, and the AC resistivity of the samples is observed to decrease with increasing frequency and doping concentration. The dielectric constant and dielectric loss were observed to decrease with frequency in the lower frequency range (0.2–10 kHz), but remained almost the same at the high-frequency region (>10 kHz). Though Ce-doped samples shows better dielectric properties than Mn-doped samples, the Ce-Mn co-doped samples, having improved their dielectric properties, can be used to fabricate different optoelectric devices.

Development of Compact Load Cell Using Multiwall Carbon Nanotube/Cotton Composites and Its Application to Human Health and Activity Monitoring

Md. Abdul Momin, Mohammad Jellur Rahman, and Tetsu Mieno

Abstract

Compact load cells have been developed using multiwall carbon nanotube/cotton (MWCNT/cotton) composites, whose performance has been optimized by varying the concentration of MWCNTs and the thickness of the composite. The sensitivity of the load cell, which is defined as the ratio of the change in the relative electric resistance to the change in applied pressure, is measured to be in the range of 180-0.20 kPa-1 for applied pressures of 8.84 Pa-884 kPa (F= 1.0 mN-100 N). The load cells show a rapid response in situations with a frequently changing force, with response times t1/2 of 4.5 and 5.0 ms for the application and release of load, respectively. The load cell demonstrates high reproducibility in tests involving more than 11,200 compression/relaxation cycles. It also has high reproducibility in different harsh environments and has a good electric-conductance recovery property. The load cell is successfully used to monitor the time-varying center of gravity of a human foot, which can be applied to the diagnosis of sick and healthy people. The MWCNT/cotton load cells can be used as wearable and flexible devices for monitoring human health.

AC Electrical Properties of Plasma Polymerized o-Methoxyaniline Thin Films.

Mohammad Jellur Rahman and Md. Abu Hashan Bhuiyan;

Abstract

Alternate current (ac) electrical properties of the plasma polymerized o-methoxyaniline (PPOMA) thin films synthesized in the glow discharge plasma using a capacitively coupled reactor are studied. Measurement revealed that the ac electrical conductivity varies with frequency ω as ωn , where the exponent n is less than unity in the range 0.1 to 2.0 kHz, indicating the Debye type conduction mechanism in the PPOMA thin films, while above this frequency range the exponent is become greater than unity indicating non-Debye type conduction. At low frequencies the conduction is considered to be due to hopping of carriers between the localized states. The PPOMA thin films of thicknesses 100−250 nm possesses dielectric constant <10, which remains static in the range 0.1−10 kHz, and decreases at higher temperature due to the orientation polarization. The dielectric loss increases with the increase in frequency having a peak around or above 10 kHz for all the PPOMA films of different thicknesses. Cole-Cole plot between the real and imaginary dielectric constant exhibits single relaxation mechanism in the PPOMA thin films.

Functionalization of Single-Walled Carbon Nanotubes by Citric Acid/Oxygen Plasma Treatment.

Mohammad Jellur Rahman and Tetsu Mieno;

Abstract

A safe and simple method of functionalizing single-walled carbon nanotubes (SWCNTs) has been developed, that significantly increases their dispersibility in water. SWCNTs in pure ethanol are treated with a supersonic homogenizer and dried. Then they are wetted with weak citric acid solution. Finally an RF (13.56 MHz) citric acid/oxygen plasma reaction is carried out under optimum conditions. As a result, hydrophilic functional groups attach onto the SWCNT surfaces, which enhance their dispersibility in water. The attachment of functional groups is identified by the FT-IR spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis. The dispersibility and dispersion stability are studied by the precipitation tests, UV-visible spectroscopy, and transmission electron microscopy. These functionalized SWCNTs are expected to be used in various applications.

Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes.

Mohammad Jellur Rahman and Tetsu Mieno;

Abstract

Electroconductive cotton textile has been prepared by a simple dipping-drying coating technique using safely functionalized multiwalled carbon nanotubes (f-MWCNTs). Owing to the surface functional groups, the f-MWCNTs become strongly attached with the cotton fibers forming network armors on their surfaces. As a result, the textile exhibits enhanced electrical properties with improved thermal conductivity and therefore is demonstrated as a flexible electrothermal heating element. The fabricated -MWCNTs/cotton textile can be heated uniformly from room temperature to ca. 100°C within few minutes depending on the applied voltage. The textile shows good thermal stability and repeatability during a long-term heating test.

Water-Dispersible Multiwalled Carbon Nanotubes Obtained from Citric-Acid-Assisted Oxygen Plasma Functionalization.

Mohammad Jellur Rahman and Tetsu Mieno;

Abstract

A new and safe method has been developed to functionalize multiwalled carbon nanotubes (MWCNTs) with fewer surface defects, which significantly increases their dispersibility in water. MWCNTs are pretreated in pure ethanol by a supersonic homogenizer. Then, the mixture is dried and soaked in weak citric acid solution. Finally, the MWCNTs in the citric acid solution are treated with radio frequency (13.56 MHz) oxygen plasma. As a result, many carboxyl functional groups are attached onto the MWCNT surfaces and stable dispersion of the MWCNTs in water is obtained. The treatment conditions are optimized in this study.

Structural and Optical Properties of Plasma Polymerized o-Methoxyaniline Thin Films.

Mohammad Jellur Rahman and Md. Abu Hashan Bhuiyan

Abstract

Plasma polymerized o-methoxyaniline (PPOMA) thin films of different thicknesses were prepared in glow discharge plasma using a parallel plate capacitively coupled polymerization reactor. The PPOMA thin films are smooth, flawless and pinhole free. Fourier transform infrared spectra reveal a decrease of absorption intensity and disappearance of some absorption peaks for PPOMA as compared to those of OMA, indicating the formation of the thin film with modified/changed chemical structure. Analyses of the ultraviolet–visible spectroscopic results reveal that the allowed indirect (Egi) and direct (Egd) band gap energies have values in the range 1.68 to 2.08 eV and 2.90 to 3.08 eV, respectively for PPOMA thin films of thicknesses from 100 to 300 nm. The Egi of the experimental PPOMA thin films does not show any definite trend with film thickness, whereas the Egd shows weak dependence on film thickness.

Production of Single-Walled Carbon Nanotubes by Modified Arc Discharge Method.

Mohammad Jellur Rahman and Tetsu Mieno,

Abstract

Single-walled carbon nanotubes (SWNTs) are synthesized by the arc discharge method in He gas, where three directions of discharge current relative to gravity are selected and their production rates are compared. The soot production rate for the upward discharge current is larger than those for the horizontal and downward discharge currents. Also, the qualities of the produced SWNTs for the three cases are almost the same. The effect of a steady magnetic field (3.0 mT) perpendicular to the discharge current direction (J×B arc discharge) is also examined. This magnetic field increases the soot production rate for all three discharge current directions. The estimated ratio of the number of SWNT bundles to the number of carbon particles is higher for the upward discharge current in the case of B = 0. This ratio increases significantly for the horizontal and downward discharge currents when a magnetic field is applied.

Multiwalled Carbon Nanotubes-Reinforced Isotactic Polypropylene Nanocomposites: Enhancement of Crystallization and Mechanical, Thermal, and Electrical Properties

Md. Akramul Haque, Md. Forhad Mina, AKM Moshiul Alam, Md. Jellur Rahman, Md. Abu Hashan Bhuiyan, and Tsutomu Asano,

Abstract

Multiwalled carbon nanotubes (MWCNTs)‐reinforced isotactic polypropylene (iPP) nanocomposites with low‐content of MWCNTs were fabricated using the melt‐cast techniques. The reinforced plastics were characterized by X‐ray diffraction (XRD) measurements, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical test, differential thermal analyses (DTA), and electrical tests. XRD studies exhibit the α‐crystal in the injection‐molded neat iPP with lamellar stacks having a long period of 150Å. Both the intensity of lamellar reflection and the thickness of long period increase with increasing the MWCNTs contents, indicating an enhancement of iPP crystallization by MWCNTs addition. This increase of lamellar thickness is analyzed to be consistent with that evaluated by DTA. SEM micrographs display larger MWCNTs aggregates with increasing amount of reinforcements and show a good adhesion between nanoparticles and iPP matrix. FTIR spectra reveal distinct chemical textures for the samples and confirm the existence of α‐crystal. Mechanical strengths, electrical conductivity, and dielectric constants are found to increase with increasing MWCNTs content, representing an improved performance of the nanocomposites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers

The Effect of Manganese Doping on the Grain Size and Transition Temperature of Barium Titanate Ceramics.

R. Islam, S. Choudhury, S. N. Rahman, and Md. Jellur Rahman,

Abstract

The structural and electrical properties of pure and manganese doped barium titanate (BaTiO3) with a general formula BaMnxTi1-xO3 (where x=0.00, 0.01, 0.02, 0.03, and 0.04) were investigated. For the observation of the surface morphology and estimation of grain sizes scanning electron microscopy (SEM) was employed. The grain size of BaTiO3 increased with an increase of the Mn doping. The Curie temperature (Tc) which indicates the tetragonal-to-cubic transition, of each sample was found from the resistivity versus temperature curve, and Tc of BaTiO3 increased linearly with an increase of the Mn doping. The Tc of un-doped BaTiO3 was lower than that of the doped samples. The Tc value of pure BaTiO3 was found to be 120 oC. It was found that the dielectric constant versus temperature curve also shows a similar type of Tc. The dielectric constant of BaMnxTi1-xO3 was found to decrease with an increase of Mn doping and the Tc of BaTiO3 increases with the addition of Mn.

Structural, Elastic and Thermal Properties of Titanium Dioxide Filled Isotactic Polypropylene, Polymer and Polymer Composites

A. H. Bhuiyan, M. F. Mina, S. Seema, M. J. Rahman, M. M. Khan, and M. A. Gafur,

Abstract

Titanium dioxide (TiO2)-filled isotactic polypropylene (iPP) composites with various contents of TiO2 were prepared by a locally fabricated extrusion molding machine. The extrudates were melt-pressed at 180 °C and produced as plane sheets of nearly equal thickness by rapid cooling. X-ray diffraction studies reveal a decrease of crystallinity and crystallites size as well as a change of α-, β- and γ-crystalline phases of the neat iPP to the α-form due to filler inclusion. Scanning electron micrographs taken on the fractured surface of the samples show increasing amount of voids with increasing filler content. Tensile strength, elongation-at-break (%) and glass transition temperature of the samples are found to decrease considerably with the increase in TiO2 content, whereas microhardness decreases slightly with the filler content.

Effect of Cerium doping on microstructure and dielectric properties of BaTiO3 Ceramics

Sabina Yasmina, Shamima Choudhury, M. A. Hakim, A. H. Bhuiyan and M. J. Rahman,

Abstract

A solid state reaction method was used to synthesize barium titanate (BT) and barium cerium titanate (BCT) ceramics at sintering temperature of 1473 K for 4 h. The effect of cerium (Ce) on the structure, microstructure and dielectric properties of BCT was investigated. The scanning electron microscopy (SEM) investigations revealed that the grain size increases with increasing Ce content. The X-ray diffraction (XRD) patterns showed mostly the BT phase, where the lattice parameter decreased with the addition of Ce. The temperature dependence of dielectric constant showed decrease in the phase transition temperature with higher Ce content. The dielectric constant decreased slightly with increasing frequency. The direct current (dc) density-voltage characteristics of the ceramics showed ohmic behavior for both the BT and BCT. As the temperature increased, the dc resistivity of the ceramics decreased. The activation energy increased with increasing Ce content.

Study of Structures and performance of white-clay filled isotactic-polypropylene composites prepared by double-molding techniques.

Md. Forhad Mina, Nasima Banu, Abdur Razzak, Md. Jellur Rahman, Md. Abdul Gafur, Md. Abu Hashan Bhuiyan,

Abstract

Various contents of Bangladeshi white clay (WC)-filled Isotactic polypropylene (iPP) composites were fabricated by double-molding techniques. Scanning electron micrographs shows a good impact between iPP matrix and fillers. X-diffraction and IR spectroscopic measurements reveal that inclusion of fillers develops an additional γ-crystal along with the α- and β-crystals that are merely observed in the neat iPP. Young's modulus and microhardness are found to increase with increasing WC content. Thermal analyses represent a considerable increase of thermal stability of the composites with filler addition. Appearance of new crystalline phase by filler inclusion and performances of the composites are discussed in detail.

Improvedperformance of isotactic polypropylene/titanium dioxide composites: Effect of processing conditions and filler content

Md. Forhad Mina, Sharmin Seema, Rummana Matin, Md. Jellur Rahman,Rama Bijoy Sarker, Md. Abdul Gafur , and Md. Abu Hashan Bhuiyan,

Abstract

Titanium dioxide (TiO2) filled isotactic polypropylene (iPP) with various content of TiO2, which was used as filler, were first single-extruded by an extruder, and then double-molded by compression molding. Scanning electron micrographs show a better adhesion between iPP and filler in the extrusion cum compression-molded samples than the extrusion-molded ones. X-ray diffraction and IR spectral studies reveal a structural change from a three-phase (α, β and γ) crystalline system of the neat iPP sample to only α-form due to inclusion of fillers. Microhardness increases rapidly and then levels off with increasing filler content and also shows variations with respect to molding conditions. A slight decrease of melting temperatures and a considerable increase of degradation temperatures of the samples with addition of filler are also observed. The dc electrical resistivity is observed to decrease with increasing TiO2 content and temperature. Both the thermal and electrical properties are also found to affect by processing conditions. Based on these results, effect of processing conditions and filler content on changing morphologies and properties of the composites is described.

Study of Dielectric and Electrical Properties of Zirconium Doped Barium Titanate Perovskite

Shamima Choudhury, Shurayya Akter, Md. Jellur Rahman, A. H. Bhuiyan, S. N. Rahman, N. Khatun and M. T. Hossain,

Abstract

The microstructural and electrical properties of pure and Zirconium (Zr) doped Barium titanate (BT) samples with general formula Ba(Ti1-xZrx)O3 (where x=0.0, 0.1, 0.2 and 0.3), prepared by high temperature solid state reaction at a sintering temperature of 1250° C, were investigated. Dielectric and structural properties of BT ceramics is influenced significantly by small addition of ZrO2. Scanning Electron Microscope (SEM) observations revealed enhanced microstructural uniformity and retarded grain growth with increasing Zr content. The dielectric study with frequency at room temperature in the frequency range 75 kHz to 30 MHz shows that dielectric constant decreases with increasing frequency. The resistivity of the samples shows asymptotic behavior with the variation of frequency and was found to be of the order of ~103 Ohm-m. Loss factor of the grown materials decreased with increasing frequency but it became independent at higher frequency range.

Electrical Properties of Cerium Doped Barium Titanate

M. J. Rahman, Shamima Choudhury, A. H. Bhuiyan, S. N. Rahman and A. H. Khan,

Abstract

Effects of Magnetic Field and Gravity on Single-Walled Carbon Nanotube Production in Three Directions of Arc Discharge Current.

Mohammad Jellur Rahman and Tetsu Mieno,

Abstract

The effects of the discharge current direction with respect to gravity and a steady magnetic field on the production of single-walled carbon nanotubes (SWNTs) by the arc discharge method are examined. In the experiment, highly dense electrons in the arc plasma collide with He gas atoms at a frequency of ~3.5 × 1011 Hz, and the electron energy is effectively transferred to the gas atoms to accelerate them to a speed greater than that of the natural heat convection. The production rate of soot changes with the direction of the discharge current. When a magnetic field is applied, electrons in the arc plasma are accelerated in the J × B direction by the Lorentz force, resulting in an increase in the production rate of soot and the efficiency of SWNT production.

Physics Part I and II, Text Books for Higher Secondary Education Approved by NCTB.

Md. Forhad Mina, Taimur Al Mobarak and Mohammad Jellur Rahman,

Abstract

Safer Production of Water Dispersible Carbon Nanotubes and Nanotube/Cotton Composite Materials.

Mohammad Jellur Rahman and Tetsu Mieno;

Abstract

Water-dispersible carbon nanotubes (WD-CNTs) have great importance in the fields of biotechnology, microelectronics, and composite materials. Sidewall functionalization is a popular method of enhancing their dispersibility in a solvent, which is usually achieved by strong acidic treatment. But, treatment under such harsh conditions deviates from green chemistry and degrades the structure and valuable properties of CNTs. Alternative safer and easier plasma method is discussed to produce functionalized CNTs (f-CNTs). The f-CNTs remain dispersed in water for more than 1 month owing to the attachment of a large number of carboxyl groups onto their surfaces. The WD-CNTs are applied to produce conductive cotton textile for the next generation textile technologies. Nonconducting cotton textile becomes electroconductive by repeatedly dipping into the f-CNT-ink and drying in air. The f-CNTs uniformly and strongly cover the individual cotton fibers. After several cycle of dipping into the f-CNT-ink, the textile becomes conductive enough to be used as wire in lighting up an LED. As a demonstration of practical use, the textile is shown as a conductive textile heater, where the textile can produce uniformly up to ca. 80°C within ca. 5 min by applying an electric power of ca. 0.1 W/cm2.

Physics Part I and II, Text Books for Higher Secondary Education Approved by NCTB.

Md. Forhad Mina, Taimur Al Mobarak and Mohammad Jellur Rahman;

Abstract

Laboratory Personel

Research Projects

At My Office

At My Work

At My Lab