Education & Training

  • Ph.D 2012

    Optoelectronics and Nanostructure Science

    Graduate School of Science and Technology, Shizuoka University, Japan

  • M.S. 2009

    Physics

    Department of Physics, University of Dhaka

  • B.Sc. 2007

    Physics

    Department of Physics, University of Dhaka

Honors, Awards and Grants

  • October 2009- September 2012
    Japanese Government Scholarship, MEXT (Monbukagakusho)
    image

    Awarded Ph.D

Filter by type:

Sort by year:

Chemical bath deposition of aluminum doped zinc sulfide thin films using non-toxic complexing agent: Effect of aluminum doping on optical and electrical properties

Kazi Hanium Maria, P. Sultana,and M. B. Asfia

Abstract

Zinc sulfide (ZnS) and aluminum doped zinc sulfide (ZnS:Al) thin films have been prepared by chemical bath deposition onto glass substrates at 85○C using non-toxic complexing agents by varying the Al concentration between 0 wt. % and 18 wt. %. The ZnS and ZnS:Al thin films exhibited a hexagonal wurtzite crystal structure and showed (008) preferential orientation. The Field Emission Scanning Electron Microscope(FESEM) images of the film showed that the glass substrate was nicely covered by compact and dense mosaic like nanostructures. The elemental composition of ZnS and ZnS:Al thin films was measured by energy dispersive x-ray spectroscopy. X-ray photoelectron spectroscopy (XPS)demonstrates the doping of Al into ZnS. From the XPS spectra, the binding energy (BE) values were observed to shift toward the lower BE side for increasing aluminum content. Raman spectra were obtained for the undoped and Al doped ZnS films, which exhibit first-order phonon modes at 328.33 cm−1and 341.66 cm−1for the A1/E1 longitudinal optical phonons, and the bands at 253.33 cm−1and 263.33 cm−1revealedlongitudinal optical phonon–plasmon coupled modes. UV–visible spectrophotometric measurement showed that approximately 70%–80%transmission happened in the visible to near infrared region, with a direct allowed bandgap in the range of 3.52 eV–3.76 eV. A maximum transmittance of 80% was observed for 6 wt. % Al doped ZnS thin films, and the absorption edge shifted toward the blue spectrum region.ZnS and ZnS:Al thin films showed n-type electrical conductivity with carrier concentrations varying from 1.55×1017/cm3to 3.13×1017/cm3. Resistivity of the ZnS:Al thin films was decreased with the increase in Al concentration.
 

Slow and first image propagation through single and coupled image resonators

P. Sultana, T. Matsumoto, and M. Tomita

Abstract

We applied Fourier space analysis to a comprehensive study of the propagation of pulsed two-dimensional images through single and coupled image resonators. The Fourier method shows that the image can propagate through the resonator successfully as long as the spatial and temporal Fourier components of the image are within the bandwidth of the amplitude and phase transfer functions. The relevant steep dispersion of the cavity can yield delayed or advanced images. The Fourier method reproduces characteristic aspects of the experimental observations of the image propagation, and also predicts new aspects, such as the spatial image profile dependence on the observation time and the coupling strength. To demonstrate the time evolution of the experiment, space- and time-resolved image propagations were performed using a streak camera.

Optical precursors in coupled-resonator-induced transparency

T. Oishi, R. Suzuki, P. Sultana, and M. Tomita

Abstract

We experimentally examined the propagation of temporally square modulated optical pulses through a coupled ring resonator. Sharp transient spikes appeared as the square pulses entered the system. The main signal gradually grew up through coupled-resonator-induced transparency (CRIT), with the time constant determined by a second resonator. Transient spikes were attributed to the higher and lower spectral components of the incident pulse, to which the resonators cannot respond; hence, they were interpreted as optical precursors. The experiments, therefore, demonstrated that precursors and the main signal can be observed separately, with amplitudes comparable to that of the incident step in CRIT.

Causal information velocity in fast and slow pulse propagation in an optical ring resonator

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi

Abstract

We examined the propagation of nonanalytical points encoded on temporally Gaussian-shaped optical pulses in fast and slow light in an optical ring resonator at λ = 1.5 μm. The temporal peak of the Gaussian pulse was either advanced or delayed, reflecting anomalous or normal dispersions in the ring resonator, relevant to under- or overcoupling conditions, respectively. The nonanalytical points were neither advanced nor delayed but appeared as they entered the ring resonator. The nonanalytical points could be interpreted as information; therefore, the experimental results suggested that information velocity is equal to the light velocity in vacuum or the background medium, independent of the group velocity. The transient behaviors at the leading and trailing edges of the nonanalytical points are discussed in terms of optical precursors.

Slow optical pulse propagation in an amplifying ring resonator

M. Tomita, T. Ueta, and P. Sultana

Abstract

We experimentally investigated optical pulse propagation through an amplifying ring resonator, in which a semiconductor optical amplifier was used as a loss or gain medium. Initially, the transmission intensity showed resonance dips as a function of laser frequency. These dips were gradually filled and transformed into resonance peaks as the amplification gain increased. A Gaussian-shaped temporal pulse was either advanced by −7.3 ns−7.3 ns at low amplification gain or delayed up to 45 ns45 ns at high gain. System operation was classified into a complete set of the four regions depending on the gain parameter, and experimental delay times were analyzed based on relevant system dispersion.

Delayed optical images through coupled-resonator-induced transparency

P. Sultana, A.Takami, T. Matsumoto, and M. Tomita

Abstract

We propagated transverse two-dimensional images encoded on optical pulses through a frequency window of a coupled-image-resonator-induced transparency. The optical images are stored and delayed by 10.6ns10.6ns, reflec ting the tunable dispersion of the coupled resonator. The k-space bandwidth of the amplitude transfer func tion of the system is discussed in the presence of the off-resonance Fano interference effect between the two resonators.

Advanced and delayed images through an image resonator

M. Tomita, P. Sultana, A. Takami, and T. Matsumoto

Abstract

We performed optical image propagation experiments in an image resonator consisting of a Fabry-Perot resonator in reflection geometry. Two-dimensional images encoded on optical pulses of 32ns were stored, and either advanced, −6.0ns, or delayed, 10.9ns, using the dispersion relation relevant to the image resonator, in the under- or over- coupling condition, respectively. The overall images are propagated through the resonator clearly, while the diffraction effects were analyzed both in real-space and in k-space.

Power dependence of size of laser ablated colloidal silver nanoparticles

T. Talukder, P. Sultana, A. F. M. Y. Haider, M. Wahadoszamen, K. M. Abedin, and S. F. U. Farhad

Abstract

Silver nanoparticles have been produced by laser ablation of silver metal in nanopure water without any chemical additives. It has been observed that laser power has a control over the size of the nanoparticles. Increasing laser power shows a clear blue shift in the absorption peak of fabricated nanoparticles indicating that the average size of the particles decreases with increasing laser power. Ablation for longer period reduces the average size of nanoparticles which is attributed to the re-ablation of fabricated nanoparticles. A good correlation has been observed between the peak of the absorption spectrum measured by UV-VIS spectroscopy and the average particle size measured by scanning electron microscope imaging method. The value of the coefficient of correlation is determined to be 0.965.

Tinospora cordifolia Mediated Green Synthesis of Copper Oxide Nanoparticles and its Antimicrobial Study

Mostafizur Rahman, and Parvin Sultana

Abstract

Green Synthesis of Copper Nanoparticles using Justicia Adhatoda Leaf Extract and its Application in Cotton fibers as Antibacterial Coatings

Md. Johorul Islam, Mohammad Jellur Rahman, and Parvin Sultana

Abstract

Influence of Iron on the Optical, Morphological and Magnetic Properties of Zinc Sulfide Thin Films Grown By Chemical Bath Deposition Technique

K. Z. Islam, M. J. Rahman, and P. Sultana

Abstract

Synthesis and Characterization of Pure and Aluminum Doped Zinc Sulfide Thin Films by Chemical Bath Deposition Technique

M. B. Asfia, K. H. Maria, P. Sultana

Abstract

Green Synthesis of Silver Nanoparticles using Azadirachta indica Leaf Extract for its Application onto Cotton Fibres as Antibacterial Coatings

M. Mondal, and P. Sultana

Abstract

Properties of Pure and Al-doped ZnS Thin Films Synthesized by Chemical Bath Deposition Technique

M. B. Asfia, K. H. Maria, P. Sultana

Abstract

Investigation of Structural, Optical and Electrical properties of Chemical Bath Deposited ZnS Thin Films

Rehab Binte Hashem, Kazi Hanium Maria, Mohammad Jellur Rahman, and Parvin Sultana

Abstract

Synthesis and Investigation of ZnS Thin Films by Chemical Bath Deposition Method

Rehab Binte Hashem, Kazi Hanium Maria, and Parvin Sultana

Abstract

Optical Precursors in Coupled-Resonator-Induced Transparency

T. Oishi, R. Suzuki, P. Sultana, M. Tomita

Abstract

Advanced and Delayed Optical Images Through Single and Coupled Image Resonator

Parvin Sultana, Takahiro Matsumoto, Makoto Tomita

Abstract

Delayed Optical Images Through Coupled-Resonator-Induced Transparency

Parvin Sultana, Takahiro Matsumoto, Makoto Tomita

Abstract

Slow and Fast Images in an Image Resonator

Parvin Sultana, Akira Takami, Takahiro Matsumoto, Makoto Tomita

Abstract

Laboratory Personel

Research Projects

At My Office

At My Work

At My Lab